\(\int \cos ^m(e+f x) \csc ^n(e+f x) \, dx\) [284]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 17, antiderivative size = 85 \[ \int \cos ^m(e+f x) \csc ^n(e+f x) \, dx=\frac {\cos ^{-1+m}(e+f x) \cos ^2(e+f x)^{\frac {1-m}{2}} \csc ^{-1+n}(e+f x) \operatorname {Hypergeometric2F1}\left (\frac {1-m}{2},\frac {1-n}{2},\frac {3-n}{2},\sin ^2(e+f x)\right )}{f (1-n)} \] Output:

cos(f*x+e)^(-1+m)*(cos(f*x+e)^2)^(1/2-1/2*m)*csc(f*x+e)^(-1+n)*hypergeom([ 
1/2-1/2*m, 1/2-1/2*n],[3/2-1/2*n],sin(f*x+e)^2)/f/(1-n)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 5 in optimal.

Time = 2.77 (sec) , antiderivative size = 312, normalized size of antiderivative = 3.67 \[ \int \cos ^m(e+f x) \csc ^n(e+f x) \, dx=-\frac {2 (-3+n) \operatorname {AppellF1}\left (\frac {1}{2}-\frac {n}{2},-m,1+m-n,\frac {3}{2}-\frac {n}{2},\tan ^2\left (\frac {1}{2} (e+f x)\right ),-\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \cos ^3\left (\frac {1}{2} (e+f x)\right ) \cos ^m(e+f x) \csc ^n(e+f x) \sin \left (\frac {1}{2} (e+f x)\right )}{f (-1+n) \left ((-3+n) \operatorname {AppellF1}\left (\frac {1}{2}-\frac {n}{2},-m,1+m-n,\frac {3}{2}-\frac {n}{2},\tan ^2\left (\frac {1}{2} (e+f x)\right ),-\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \cos ^2\left (\frac {1}{2} (e+f x)\right )+2 \left (m \operatorname {AppellF1}\left (\frac {3}{2}-\frac {n}{2},1-m,1+m-n,\frac {5}{2}-\frac {n}{2},\tan ^2\left (\frac {1}{2} (e+f x)\right ),-\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )+(1+m-n) \operatorname {AppellF1}\left (\frac {3}{2}-\frac {n}{2},-m,2+m-n,\frac {5}{2}-\frac {n}{2},\tan ^2\left (\frac {1}{2} (e+f x)\right ),-\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )\right ) \sin ^2\left (\frac {1}{2} (e+f x)\right )\right )} \] Input:

Integrate[Cos[e + f*x]^m*Csc[e + f*x]^n,x]
 

Output:

(-2*(-3 + n)*AppellF1[1/2 - n/2, -m, 1 + m - n, 3/2 - n/2, Tan[(e + f*x)/2 
]^2, -Tan[(e + f*x)/2]^2]*Cos[(e + f*x)/2]^3*Cos[e + f*x]^m*Csc[e + f*x]^n 
*Sin[(e + f*x)/2])/(f*(-1 + n)*((-3 + n)*AppellF1[1/2 - n/2, -m, 1 + m - n 
, 3/2 - n/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2]*Cos[(e + f*x)/2]^2 + 
 2*(m*AppellF1[3/2 - n/2, 1 - m, 1 + m - n, 5/2 - n/2, Tan[(e + f*x)/2]^2, 
 -Tan[(e + f*x)/2]^2] + (1 + m - n)*AppellF1[3/2 - n/2, -m, 2 + m - n, 5/2 
 - n/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2])*Sin[(e + f*x)/2]^2))
 

Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {3042, 3067, 3042, 3057}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^m(e+f x) \csc ^n(e+f x) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (e+f x+\frac {\pi }{2}\right )^m \left (-\sec \left (e+f x+\frac {\pi }{2}\right )\right )^ndx\)

\(\Big \downarrow \) 3067

\(\displaystyle \sin ^n(e+f x) \csc ^n(e+f x) \int \cos ^m(e+f x) \sin ^{-n}(e+f x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sin ^n(e+f x) \csc ^n(e+f x) \int \cos (e+f x)^m \sin (e+f x)^{-n}dx\)

\(\Big \downarrow \) 3057

\(\displaystyle \frac {\cos ^{m-1}(e+f x) \cos ^2(e+f x)^{\frac {1-m}{2}} \csc ^{n-1}(e+f x) \operatorname {Hypergeometric2F1}\left (\frac {1-m}{2},\frac {1-n}{2},\frac {3-n}{2},\sin ^2(e+f x)\right )}{f (1-n)}\)

Input:

Int[Cos[e + f*x]^m*Csc[e + f*x]^n,x]
 

Output:

(Cos[e + f*x]^(-1 + m)*(Cos[e + f*x]^2)^((1 - m)/2)*Csc[e + f*x]^(-1 + n)* 
Hypergeometric2F1[(1 - m)/2, (1 - n)/2, (3 - n)/2, Sin[e + f*x]^2])/(f*(1 
- n))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3057
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[b^(2*IntPart[(n - 1)/2] + 1)*(b*Cos[e + f*x])^(2*Frac 
Part[(n - 1)/2])*((a*Sin[e + f*x])^(m + 1)/(a*f*(m + 1)*(Cos[e + f*x]^2)^Fr 
acPart[(n - 1)/2]))*Hypergeometric2F1[(1 + m)/2, (1 - n)/2, (3 + m)/2, Sin[ 
e + f*x]^2], x] /; FreeQ[{a, b, e, f, m, n}, x]
 

rule 3067
Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[b^2*(b*Cos[e + f*x])^(n - 1)*(b*Sec[e + f*x])^(n - 1) 
   Int[(a*Sin[e + f*x])^m/(b*Cos[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, 
m, n}, x] &&  !IntegerQ[m] &&  !IntegerQ[n]
 
Maple [F]

\[\int \cos \left (f x +e \right )^{m} \csc \left (f x +e \right )^{n}d x\]

Input:

int(cos(f*x+e)^m*csc(f*x+e)^n,x)
 

Output:

int(cos(f*x+e)^m*csc(f*x+e)^n,x)
 

Fricas [F]

\[ \int \cos ^m(e+f x) \csc ^n(e+f x) \, dx=\int { \cos \left (f x + e\right )^{m} \csc \left (f x + e\right )^{n} \,d x } \] Input:

integrate(cos(f*x+e)^m*csc(f*x+e)^n,x, algorithm="fricas")
 

Output:

integral(cos(f*x + e)^m*csc(f*x + e)^n, x)
 

Sympy [F]

\[ \int \cos ^m(e+f x) \csc ^n(e+f x) \, dx=\int \cos ^{m}{\left (e + f x \right )} \csc ^{n}{\left (e + f x \right )}\, dx \] Input:

integrate(cos(f*x+e)**m*csc(f*x+e)**n,x)
 

Output:

Integral(cos(e + f*x)**m*csc(e + f*x)**n, x)
 

Maxima [F]

\[ \int \cos ^m(e+f x) \csc ^n(e+f x) \, dx=\int { \cos \left (f x + e\right )^{m} \csc \left (f x + e\right )^{n} \,d x } \] Input:

integrate(cos(f*x+e)^m*csc(f*x+e)^n,x, algorithm="maxima")
 

Output:

integrate(cos(f*x + e)^m*csc(f*x + e)^n, x)
 

Giac [F]

\[ \int \cos ^m(e+f x) \csc ^n(e+f x) \, dx=\int { \cos \left (f x + e\right )^{m} \csc \left (f x + e\right )^{n} \,d x } \] Input:

integrate(cos(f*x+e)^m*csc(f*x+e)^n,x, algorithm="giac")
 

Output:

integrate(cos(f*x + e)^m*csc(f*x + e)^n, x)
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^m(e+f x) \csc ^n(e+f x) \, dx=\int {\cos \left (e+f\,x\right )}^m\,{\left (\frac {1}{\sin \left (e+f\,x\right )}\right )}^n \,d x \] Input:

int(cos(e + f*x)^m*(1/sin(e + f*x))^n,x)
 

Output:

int(cos(e + f*x)^m*(1/sin(e + f*x))^n, x)
 

Reduce [F]

\[ \int \cos ^m(e+f x) \csc ^n(e+f x) \, dx=\int \csc \left (f x +e \right )^{n} \cos \left (f x +e \right )^{m}d x \] Input:

int(cos(f*x+e)^m*csc(f*x+e)^n,x)
 

Output:

int(csc(e + f*x)**n*cos(e + f*x)**m,x)