\(\int (a+b \cos (c+d x))^{5/2} \, dx\) [50]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 14, antiderivative size = 197 \[ \int (a+b \cos (c+d x))^{5/2} \, dx=\frac {2 \left (23 a^2+9 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{15 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {16 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{15 d \sqrt {a+b \cos (c+d x)}}+\frac {16 a b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 b (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d} \] Output:

2/15*(23*a^2+9*b^2)*(a+b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^ 
(1/2)*(b/(a+b))^(1/2))/d/((a+b*cos(d*x+c))/(a+b))^(1/2)-16/15*a*(a^2-b^2)* 
((a+b*cos(d*x+c))/(a+b))^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2)*(b/(a 
+b))^(1/2))/d/(a+b*cos(d*x+c))^(1/2)+16/15*a*b*(a+b*cos(d*x+c))^(1/2)*sin( 
d*x+c)/d+2/5*b*(a+b*cos(d*x+c))^(3/2)*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 1.01 (sec) , antiderivative size = 177, normalized size of antiderivative = 0.90 \[ \int (a+b \cos (c+d x))^{5/2} \, dx=\frac {2 \left (23 a^3+23 a^2 b+9 a b^2+9 b^3\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-16 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )+b \left (22 a^2+3 b^2+28 a b \cos (c+d x)+3 b^2 \cos (2 (c+d x))\right ) \sin (c+d x)}{15 d \sqrt {a+b \cos (c+d x)}} \] Input:

Integrate[(a + b*Cos[c + d*x])^(5/2),x]
 

Output:

(2*(23*a^3 + 23*a^2*b + 9*a*b^2 + 9*b^3)*Sqrt[(a + b*Cos[c + d*x])/(a + b) 
]*EllipticE[(c + d*x)/2, (2*b)/(a + b)] - 16*a*(a^2 - b^2)*Sqrt[(a + b*Cos 
[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)] + b*(22*a^2 + 3* 
b^2 + 28*a*b*Cos[c + d*x] + 3*b^2*Cos[2*(c + d*x)])*Sin[c + d*x])/(15*d*Sq 
rt[a + b*Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.03, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.071, Rules used = {3042, 3135, 27, 3042, 3232, 27, 3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a+b \cos (c+d x))^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}dx\)

\(\Big \downarrow \) 3135

\(\displaystyle \frac {2}{5} \int \frac {1}{2} \sqrt {a+b \cos (c+d x)} \left (5 a^2+8 b \cos (c+d x) a+3 b^2\right )dx+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \sqrt {a+b \cos (c+d x)} \left (5 a^2+8 b \cos (c+d x) a+3 b^2\right )dx+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (5 a^2+8 b \sin \left (c+d x+\frac {\pi }{2}\right ) a+3 b^2\right )dx+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 3232

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \int \frac {a \left (15 a^2+17 b^2\right )+b \left (23 a^2+9 b^2\right ) \cos (c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx+\frac {16 a b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \int \frac {a \left (15 a^2+17 b^2\right )+b \left (23 a^2+9 b^2\right ) \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx+\frac {16 a b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \int \frac {a \left (15 a^2+17 b^2\right )+b \left (23 a^2+9 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {16 a b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\left (23 a^2+9 b^2\right ) \int \sqrt {a+b \cos (c+d x)}dx-8 a \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx\right )+\frac {16 a b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\left (23 a^2+9 b^2\right ) \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx-8 a \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {16 a b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {\left (23 a^2+9 b^2\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-8 a \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {16 a b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {\left (23 a^2+9 b^2\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-8 a \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {16 a b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {2 \left (23 a^2+9 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-8 a \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {16 a b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {2 \left (23 a^2+9 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {8 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}\right )+\frac {16 a b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {2 \left (23 a^2+9 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {8 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}\right )+\frac {16 a b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {2 \left (23 a^2+9 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {16 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}\right )+\frac {16 a b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}\)

Input:

Int[(a + b*Cos[c + d*x])^(5/2),x]
 

Output:

(2*b*(a + b*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(5*d) + (((2*(23*a^2 + 9*b^2 
)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[ 
(a + b*Cos[c + d*x])/(a + b)]) - (16*a*(a^2 - b^2)*Sqrt[(a + b*Cos[c + d*x 
])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d 
*x]]))/3 + (16*a*b*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(3*d))/5
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3135
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos 
[c + d*x]*((a + b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[1/n   Int[(a + b* 
Sin[c + d*x])^(n - 2)*Simp[a^2*n + b^2*(n - 1) + a*b*(2*n - 1)*Sin[c + d*x] 
, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 1] && 
 IntegerQ[2*n]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3232
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/( 
f*(m + 1))), x] + Simp[1/(m + 1)   Int[(a + b*Sin[e + f*x])^(m - 1)*Simp[b* 
d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ 
[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 
 0] && IntegerQ[2*m]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(661\) vs. \(2(186)=372\).

Time = 8.38 (sec) , antiderivative size = 662, normalized size of antiderivative = 3.36

method result size
default \(-\frac {2 \sqrt {\left (2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7} b^{3}+56 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} a \,b^{2}-48 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} b^{3}+22 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a^{2} b -84 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a \,b^{2}+30 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} b^{3}-8 a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )+8 b^{2} a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )+23 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{3}-23 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2} b +9 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a \,b^{2}-9 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b^{3}-22 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{2} b +28 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a \,b^{2}-6 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{3}\right )}{15 \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(662\)

Input:

int((a+cos(d*x+c)*b)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-2/15*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(24*cos( 
1/2*d*x+1/2*c)^7*b^3+56*cos(1/2*d*x+1/2*c)^5*a*b^2-48*cos(1/2*d*x+1/2*c)^5 
*b^3+22*cos(1/2*d*x+1/2*c)^3*a^2*b-84*cos(1/2*d*x+1/2*c)^3*a*b^2+30*cos(1/ 
2*d*x+1/2*c)^3*b^3-8*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/ 
2*c)^2+a-b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+ 
8*b^2*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b) 
)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+23*(sin(1/2*d*x+1 
/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(cos( 
1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3-23*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2 
*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2 
*b/(a-b))^(1/2))*a^2*b+9*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/ 
2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))* 
a*b^2-9*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b) 
)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^3-22*cos(1/2*d* 
x+1/2*c)*a^2*b+28*cos(1/2*d*x+1/2*c)*a*b^2-6*cos(1/2*d*x+1/2*c)*b^3)/(-2*b 
*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c) 
/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 437, normalized size of antiderivative = 2.22 \[ \int (a+b \cos (c+d x))^{5/2} \, dx=-\frac {2 \, {\left (\sqrt {\frac {1}{2}} {\left (-i \, a^{3} + 33 i \, a b^{2}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) + \sqrt {\frac {1}{2}} {\left (i \, a^{3} - 33 i \, a b^{2}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) + 3 \, \sqrt {\frac {1}{2}} {\left (-23 i \, a^{2} b - 9 i \, b^{3}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) + 3 \, \sqrt {\frac {1}{2}} {\left (23 i \, a^{2} b + 9 i \, b^{3}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) - 3 \, {\left (3 \, b^{3} \cos \left (d x + c\right ) + 11 \, a b^{2}\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )\right )}}{45 \, b d} \] Input:

integrate((a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

-2/45*(sqrt(1/2)*(-I*a^3 + 33*I*a*b^2)*sqrt(b)*weierstrassPInverse(4/3*(4* 
a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I 
*b*sin(d*x + c) + 2*a)/b) + sqrt(1/2)*(I*a^3 - 33*I*a*b^2)*sqrt(b)*weierst 
rassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3* 
b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b) + 3*sqrt(1/2)*(-23*I*a^2*b - 
 9*I*b^3)*sqrt(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 
9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 
9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a)/b)) + 3*sq 
rt(1/2)*(23*I*a^2*b + 9*I*b^3)*sqrt(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2) 
/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2) 
/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + 
 c) + 2*a)/b)) - 3*(3*b^3*cos(d*x + c) + 11*a*b^2)*sqrt(b*cos(d*x + c) + a 
)*sin(d*x + c))/(b*d)
 

Sympy [F]

\[ \int (a+b \cos (c+d x))^{5/2} \, dx=\int \left (a + b \cos {\left (c + d x \right )}\right )^{\frac {5}{2}}\, dx \] Input:

integrate((a+b*cos(d*x+c))**(5/2),x)
 

Output:

Integral((a + b*cos(c + d*x))**(5/2), x)
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int (a+b \cos (c+d x))^{5/2} \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

integrate((b*cos(d*x + c) + a)^(5/2), x)
 

Giac [F]

\[ \int (a+b \cos (c+d x))^{5/2} \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

integrate((b*cos(d*x + c) + a)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{5/2} \, dx=\int {\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2} \,d x \] Input:

int((a + b*cos(c + d*x))^(5/2),x)
 

Output:

int((a + b*cos(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int (a+b \cos (c+d x))^{5/2} \, dx=\left (\int \sqrt {\cos \left (d x +c \right ) b +a}d x \right ) a^{2}+2 \left (\int \sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )d x \right ) a b +\left (\int \sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )^{2}d x \right ) b^{2} \] Input:

int((a+b*cos(d*x+c))^(5/2),x)
 

Output:

int(sqrt(cos(c + d*x)*b + a),x)*a**2 + 2*int(sqrt(cos(c + d*x)*b + a)*cos( 
c + d*x),x)*a*b + int(sqrt(cos(c + d*x)*b + a)*cos(c + d*x)**2,x)*b**2