\(\int \frac {(a+b \cos (c+d x))^3}{(e \sin (c+d x))^{3/2}} \, dx\) [54]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 165 \[ \int \frac {(a+b \cos (c+d x))^3}{(e \sin (c+d x))^{3/2}} \, dx=-\frac {2 (b+a \cos (c+d x)) (a+b \cos (c+d x))^2}{d e \sqrt {e \sin (c+d x)}}-\frac {2 a \left (a^2+6 b^2\right ) E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{d e^2 \sqrt {\sin (c+d x)}}-\frac {2 b \left (3 a^2+4 b^2\right ) (e \sin (c+d x))^{3/2}}{3 d e^3}-\frac {2 a b (a+b \cos (c+d x)) (e \sin (c+d x))^{3/2}}{d e^3} \] Output:

-2*(b+a*cos(d*x+c))*(a+b*cos(d*x+c))^2/d/e/(e*sin(d*x+c))^(1/2)+2*a*(a^2+6 
*b^2)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*(e*sin(d*x+c))^(1/2)/d/ 
e^2/sin(d*x+c)^(1/2)-2/3*b*(3*a^2+4*b^2)*(e*sin(d*x+c))^(3/2)/d/e^3-2*a*b* 
(a+b*cos(d*x+c))*(e*sin(d*x+c))^(3/2)/d/e^3
 

Mathematica [A] (verified)

Time = 1.23 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.61 \[ \int \frac {(a+b \cos (c+d x))^3}{(e \sin (c+d x))^{3/2}} \, dx=-\frac {2 \left (9 a^2 b+3 b^3+3 a \left (a^2+3 b^2\right ) \cos (c+d x)-3 a \left (a^2+6 b^2\right ) E\left (\left .\frac {1}{4} (-2 c+\pi -2 d x)\right |2\right ) \sqrt {\sin (c+d x)}+b^3 \sin ^2(c+d x)\right )}{3 d e \sqrt {e \sin (c+d x)}} \] Input:

Integrate[(a + b*Cos[c + d*x])^3/(e*Sin[c + d*x])^(3/2),x]
 

Output:

(-2*(9*a^2*b + 3*b^3 + 3*a*(a^2 + 3*b^2)*Cos[c + d*x] - 3*a*(a^2 + 6*b^2)* 
EllipticE[(-2*c + Pi - 2*d*x)/4, 2]*Sqrt[Sin[c + d*x]] + b^3*Sin[c + d*x]^ 
2))/(3*d*e*Sqrt[e*Sin[c + d*x]])
 

Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.02, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 3170, 27, 3042, 3341, 27, 3042, 3148, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x))^3}{(e \sin (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a-b \sin \left (c+d x-\frac {\pi }{2}\right )\right )^3}{\left (e \cos \left (c+d x-\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 3170

\(\displaystyle -\frac {2 \int \frac {1}{2} (a+b \cos (c+d x)) \left (a^2+5 b \cos (c+d x) a+4 b^2\right ) \sqrt {e \sin (c+d x)}dx}{e^2}-\frac {2 (a \cos (c+d x)+b) (a+b \cos (c+d x))^2}{d e \sqrt {e \sin (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int (a+b \cos (c+d x)) \left (a^2+5 b \cos (c+d x) a+4 b^2\right ) \sqrt {e \sin (c+d x)}dx}{e^2}-\frac {2 (a \cos (c+d x)+b) (a+b \cos (c+d x))^2}{d e \sqrt {e \sin (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \sqrt {-e \cos \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right ) \left (a^2+5 b \sin \left (c+d x+\frac {\pi }{2}\right ) a+4 b^2\right )dx}{e^2}-\frac {2 (a \cos (c+d x)+b) (a+b \cos (c+d x))^2}{d e \sqrt {e \sin (c+d x)}}\)

\(\Big \downarrow \) 3341

\(\displaystyle -\frac {\frac {2}{5} \int \frac {5}{2} \left (a \left (a^2+6 b^2\right )+b \left (3 a^2+4 b^2\right ) \cos (c+d x)\right ) \sqrt {e \sin (c+d x)}dx+\frac {2 a b (e \sin (c+d x))^{3/2} (a+b \cos (c+d x))}{d e}}{e^2}-\frac {2 (a \cos (c+d x)+b) (a+b \cos (c+d x))^2}{d e \sqrt {e \sin (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \left (a \left (a^2+6 b^2\right )+b \left (3 a^2+4 b^2\right ) \cos (c+d x)\right ) \sqrt {e \sin (c+d x)}dx+\frac {2 a b (e \sin (c+d x))^{3/2} (a+b \cos (c+d x))}{d e}}{e^2}-\frac {2 (a \cos (c+d x)+b) (a+b \cos (c+d x))^2}{d e \sqrt {e \sin (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \sqrt {e \cos \left (c+d x-\frac {\pi }{2}\right )} \left (a \left (a^2+6 b^2\right )-b \left (3 a^2+4 b^2\right ) \sin \left (c+d x-\frac {\pi }{2}\right )\right )dx+\frac {2 a b (e \sin (c+d x))^{3/2} (a+b \cos (c+d x))}{d e}}{e^2}-\frac {2 (a \cos (c+d x)+b) (a+b \cos (c+d x))^2}{d e \sqrt {e \sin (c+d x)}}\)

\(\Big \downarrow \) 3148

\(\displaystyle -\frac {a \left (a^2+6 b^2\right ) \int \sqrt {e \sin (c+d x)}dx+\frac {2 b \left (3 a^2+4 b^2\right ) (e \sin (c+d x))^{3/2}}{3 d e}+\frac {2 a b (e \sin (c+d x))^{3/2} (a+b \cos (c+d x))}{d e}}{e^2}-\frac {2 (a \cos (c+d x)+b) (a+b \cos (c+d x))^2}{d e \sqrt {e \sin (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a \left (a^2+6 b^2\right ) \int \sqrt {e \sin (c+d x)}dx+\frac {2 b \left (3 a^2+4 b^2\right ) (e \sin (c+d x))^{3/2}}{3 d e}+\frac {2 a b (e \sin (c+d x))^{3/2} (a+b \cos (c+d x))}{d e}}{e^2}-\frac {2 (a \cos (c+d x)+b) (a+b \cos (c+d x))^2}{d e \sqrt {e \sin (c+d x)}}\)

\(\Big \downarrow \) 3121

\(\displaystyle -\frac {\frac {a \left (a^2+6 b^2\right ) \sqrt {e \sin (c+d x)} \int \sqrt {\sin (c+d x)}dx}{\sqrt {\sin (c+d x)}}+\frac {2 b \left (3 a^2+4 b^2\right ) (e \sin (c+d x))^{3/2}}{3 d e}+\frac {2 a b (e \sin (c+d x))^{3/2} (a+b \cos (c+d x))}{d e}}{e^2}-\frac {2 (a \cos (c+d x)+b) (a+b \cos (c+d x))^2}{d e \sqrt {e \sin (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {a \left (a^2+6 b^2\right ) \sqrt {e \sin (c+d x)} \int \sqrt {\sin (c+d x)}dx}{\sqrt {\sin (c+d x)}}+\frac {2 b \left (3 a^2+4 b^2\right ) (e \sin (c+d x))^{3/2}}{3 d e}+\frac {2 a b (e \sin (c+d x))^{3/2} (a+b \cos (c+d x))}{d e}}{e^2}-\frac {2 (a \cos (c+d x)+b) (a+b \cos (c+d x))^2}{d e \sqrt {e \sin (c+d x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {\frac {2 b \left (3 a^2+4 b^2\right ) (e \sin (c+d x))^{3/2}}{3 d e}+\frac {2 a \left (a^2+6 b^2\right ) E\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{d \sqrt {\sin (c+d x)}}+\frac {2 a b (e \sin (c+d x))^{3/2} (a+b \cos (c+d x))}{d e}}{e^2}-\frac {2 (a \cos (c+d x)+b) (a+b \cos (c+d x))^2}{d e \sqrt {e \sin (c+d x)}}\)

Input:

Int[(a + b*Cos[c + d*x])^3/(e*Sin[c + d*x])^(3/2),x]
 

Output:

(-2*(b + a*Cos[c + d*x])*(a + b*Cos[c + d*x])^2)/(d*e*Sqrt[e*Sin[c + d*x]] 
) - ((2*a*(a^2 + 6*b^2)*EllipticE[(c - Pi/2 + d*x)/2, 2]*Sqrt[e*Sin[c + d* 
x]])/(d*Sqrt[Sin[c + d*x]]) + (2*b*(3*a^2 + 4*b^2)*(e*Sin[c + d*x])^(3/2)) 
/(3*d*e) + (2*a*b*(a + b*Cos[c + d*x])*(e*Sin[c + d*x])^(3/2))/(d*e))/e^2
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3148
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[(-b)*((g*Cos[e + f*x])^(p + 1)/(f*g*(p + 1))), x] + 
 Simp[a   Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x] && 
 (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])
 

rule 3170
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(-(g*Cos[e + f*x])^(p + 1))*(a + b*Sin[e + f*x 
])^(m - 1)*((b + a*Sin[e + f*x])/(f*g*(p + 1))), x] + Simp[1/(g^2*(p + 1)) 
  Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 2)*(b^2*(m - 1) + 
a^2*(p + 2) + a*b*(m + p + 1)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g 
}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LtQ[p, -1] && (IntegersQ[2*m, 2* 
p] || IntegerQ[m])
 

rule 3341
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d)* 
(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(f*g*(m + p + 1))), x] + S 
imp[1/(m + p + 1)   Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1)*Sim 
p[a*c*(m + p + 1) + b*d*m + (a*d*m + b*c*(m + p + 1))*Sin[e + f*x], x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] 
 &&  !LtQ[p, -1] && IntegerQ[2*m] &&  !(EqQ[m, 1] && NeQ[c^2 - d^2, 0] && S 
implerQ[c + d*x, a + b*x])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(312\) vs. \(2(153)=306\).

Time = 4.81 (sec) , antiderivative size = 313, normalized size of antiderivative = 1.90

method result size
default \(\frac {6 \sqrt {1-\sin \left (d x +c \right )}\, \sqrt {2+2 \sin \left (d x +c \right )}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticE}\left (\sqrt {1-\sin \left (d x +c \right )}, \frac {\sqrt {2}}{2}\right ) a^{3}+36 \sqrt {1-\sin \left (d x +c \right )}\, \sqrt {2+2 \sin \left (d x +c \right )}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticE}\left (\sqrt {1-\sin \left (d x +c \right )}, \frac {\sqrt {2}}{2}\right ) a \,b^{2}-3 \sqrt {1-\sin \left (d x +c \right )}\, \sqrt {2+2 \sin \left (d x +c \right )}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {1-\sin \left (d x +c \right )}, \frac {\sqrt {2}}{2}\right ) a^{3}-18 \sqrt {1-\sin \left (d x +c \right )}\, \sqrt {2+2 \sin \left (d x +c \right )}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {1-\sin \left (d x +c \right )}, \frac {\sqrt {2}}{2}\right ) a \,b^{2}+2 \cos \left (d x +c \right )^{3} b^{3}-6 a^{3} \cos \left (d x +c \right )^{2}-18 a \,b^{2} \cos \left (d x +c \right )^{2}-18 a^{2} b \cos \left (d x +c \right )-8 b^{3} \cos \left (d x +c \right )}{3 e \sqrt {e \sin \left (d x +c \right )}\, \cos \left (d x +c \right ) d}\) \(313\)
parts \(\frac {a^{3} \left (2 \sqrt {1-\sin \left (d x +c \right )}\, \sqrt {2+2 \sin \left (d x +c \right )}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticE}\left (\sqrt {1-\sin \left (d x +c \right )}, \frac {\sqrt {2}}{2}\right )-\sqrt {1-\sin \left (d x +c \right )}\, \sqrt {2+2 \sin \left (d x +c \right )}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {1-\sin \left (d x +c \right )}, \frac {\sqrt {2}}{2}\right )-2 \cos \left (d x +c \right )^{2}\right )}{e \cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}\, d}-\frac {2 b^{3} \left (\frac {\left (e \sin \left (d x +c \right )\right )^{\frac {3}{2}}}{3}+\frac {e^{2}}{\sqrt {e \sin \left (d x +c \right )}}\right )}{d \,e^{3}}-\frac {6 a^{2} b}{\sqrt {e \sin \left (d x +c \right )}\, e d}+\frac {6 b^{2} a \left (2 \sqrt {1-\sin \left (d x +c \right )}\, \sqrt {2+2 \sin \left (d x +c \right )}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticE}\left (\sqrt {1-\sin \left (d x +c \right )}, \frac {\sqrt {2}}{2}\right )-\sqrt {1-\sin \left (d x +c \right )}\, \sqrt {2+2 \sin \left (d x +c \right )}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {1-\sin \left (d x +c \right )}, \frac {\sqrt {2}}{2}\right )-\cos \left (d x +c \right )^{2}\right )}{e \cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}\, d}\) \(350\)

Input:

int((a+cos(d*x+c)*b)^3/(e*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/3/e/(e*sin(d*x+c))^(1/2)/cos(d*x+c)*(6*(1-sin(d*x+c))^(1/2)*(2+2*sin(d*x 
+c))^(1/2)*sin(d*x+c)^(1/2)*EllipticE((1-sin(d*x+c))^(1/2),1/2*2^(1/2))*a^ 
3+36*(1-sin(d*x+c))^(1/2)*(2+2*sin(d*x+c))^(1/2)*sin(d*x+c)^(1/2)*Elliptic 
E((1-sin(d*x+c))^(1/2),1/2*2^(1/2))*a*b^2-3*(1-sin(d*x+c))^(1/2)*(2+2*sin( 
d*x+c))^(1/2)*sin(d*x+c)^(1/2)*EllipticF((1-sin(d*x+c))^(1/2),1/2*2^(1/2)) 
*a^3-18*(1-sin(d*x+c))^(1/2)*(2+2*sin(d*x+c))^(1/2)*sin(d*x+c)^(1/2)*Ellip 
ticF((1-sin(d*x+c))^(1/2),1/2*2^(1/2))*a*b^2+2*cos(d*x+c)^3*b^3-6*a^3*cos( 
d*x+c)^2-18*a*b^2*cos(d*x+c)^2-18*a^2*b*cos(d*x+c)-8*b^3*cos(d*x+c))/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.99 \[ \int \frac {(a+b \cos (c+d x))^3}{(e \sin (c+d x))^{3/2}} \, dx=-\frac {2 \, {\left (3 \, {\left (i \, a^{3} + 6 i \, a b^{2}\right )} \sqrt {-\frac {1}{2} i \, e} \sin \left (d x + c\right ) {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (-i \, a^{3} - 6 i \, a b^{2}\right )} \sqrt {\frac {1}{2} i \, e} \sin \left (d x + c\right ) {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (b^{3} \cos \left (d x + c\right )^{2} - 9 \, a^{2} b - 4 \, b^{3} - 3 \, {\left (a^{3} + 3 \, a b^{2}\right )} \cos \left (d x + c\right )\right )} \sqrt {e \sin \left (d x + c\right )}\right )}}{3 \, d e^{2} \sin \left (d x + c\right )} \] Input:

integrate((a+b*cos(d*x+c))^3/(e*sin(d*x+c))^(3/2),x, algorithm="fricas")
 

Output:

-2/3*(3*(I*a^3 + 6*I*a*b^2)*sqrt(-1/2*I*e)*sin(d*x + c)*weierstrassZeta(4, 
 0, weierstrassPInverse(4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*(-I*a^3 
- 6*I*a*b^2)*sqrt(1/2*I*e)*sin(d*x + c)*weierstrassZeta(4, 0, weierstrassP 
Inverse(4, 0, cos(d*x + c) - I*sin(d*x + c))) - (b^3*cos(d*x + c)^2 - 9*a^ 
2*b - 4*b^3 - 3*(a^3 + 3*a*b^2)*cos(d*x + c))*sqrt(e*sin(d*x + c)))/(d*e^2 
*sin(d*x + c))
 

Sympy [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{(e \sin (c+d x))^{3/2}} \, dx=\int \frac {\left (a + b \cos {\left (c + d x \right )}\right )^{3}}{\left (e \sin {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((a+b*cos(d*x+c))**3/(e*sin(d*x+c))**(3/2),x)
 

Output:

Integral((a + b*cos(c + d*x))**3/(e*sin(c + d*x))**(3/2), x)
 

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{(e \sin (c+d x))^{3/2}} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\left (e \sin \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^3/(e*sin(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

integrate((b*cos(d*x + c) + a)^3/(e*sin(d*x + c))^(3/2), x)
 

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{(e \sin (c+d x))^{3/2}} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\left (e \sin \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^3/(e*sin(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

integrate((b*cos(d*x + c) + a)^3/(e*sin(d*x + c))^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^3}{(e \sin (c+d x))^{3/2}} \, dx=\int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^3}{{\left (e\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int((a + b*cos(c + d*x))^3/(e*sin(c + d*x))^(3/2),x)
                                                                                    
                                                                                    
 

Output:

int((a + b*cos(c + d*x))^3/(e*sin(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{(e \sin (c+d x))^{3/2}} \, dx=\frac {\sqrt {e}\, \left (-6 \sqrt {\sin \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} b^{3}-8 \sqrt {\sin \left (d x +c \right )}\, \sin \left (d x +c \right )^{2} b^{3}-18 \sqrt {\sin \left (d x +c \right )}\, a^{2} b +3 \left (\int \frac {\sqrt {\sin \left (d x +c \right )}}{\sin \left (d x +c \right )^{2}}d x \right ) \sin \left (d x +c \right ) a^{3} d +9 \left (\int \frac {\sqrt {\sin \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\sin \left (d x +c \right )^{2}}d x \right ) \sin \left (d x +c \right ) a \,b^{2} d \right )}{3 \sin \left (d x +c \right ) d \,e^{2}} \] Input:

int((a+b*cos(d*x+c))^3/(e*sin(d*x+c))^(3/2),x)
 

Output:

(sqrt(e)*( - 6*sqrt(sin(c + d*x))*cos(c + d*x)**2*b**3 - 8*sqrt(sin(c + d* 
x))*sin(c + d*x)**2*b**3 - 18*sqrt(sin(c + d*x))*a**2*b + 3*int(sqrt(sin(c 
 + d*x))/sin(c + d*x)**2,x)*sin(c + d*x)*a**3*d + 9*int((sqrt(sin(c + d*x) 
)*cos(c + d*x)**2)/sin(c + d*x)**2,x)*sin(c + d*x)*a*b**2*d))/(3*sin(c + d 
*x)*d*e**2)