\(\int \frac {1}{(a+b \cos (c+d x)) (e \sin (c+d x))^{5/2}} \, dx\) [66]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (warning: unable to verify)
Maple [A] (warning: unable to verify)
Fricas [F]
Sympy [F]
Maxima [F(-1)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 447 \[ \int \frac {1}{(a+b \cos (c+d x)) (e \sin (c+d x))^{5/2}} \, dx=\frac {b^{5/2} \arctan \left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{\left (-a^2+b^2\right )^{7/4} d e^{5/2}}+\frac {b^{5/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{\left (-a^2+b^2\right )^{7/4} d e^{5/2}}+\frac {2 (b-a \cos (c+d x))}{3 \left (a^2-b^2\right ) d e (e \sin (c+d x))^{3/2}}+\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{3 \left (a^2-b^2\right ) d e^2 \sqrt {e \sin (c+d x)}}-\frac {a b^2 \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{\left (a^2-b^2\right ) \left (a^2-b \left (b-\sqrt {-a^2+b^2}\right )\right ) d e^2 \sqrt {e \sin (c+d x)}}-\frac {a b^2 \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),2\right ) \sqrt {\sin (c+d x)}}{\left (a^2-b^2\right ) \left (a^2-b \left (b+\sqrt {-a^2+b^2}\right )\right ) d e^2 \sqrt {e \sin (c+d x)}} \] Output:

b^(5/2)*arctan(b^(1/2)*(e*sin(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))/(-a^ 
2+b^2)^(7/4)/d/e^(5/2)+b^(5/2)*arctanh(b^(1/2)*(e*sin(d*x+c))^(1/2)/(-a^2+ 
b^2)^(1/4)/e^(1/2))/(-a^2+b^2)^(7/4)/d/e^(5/2)+2/3*(b-a*cos(d*x+c))/(a^2-b 
^2)/d/e/(e*sin(d*x+c))^(3/2)+2/3*a*InverseJacobiAM(1/2*c-1/4*Pi+1/2*d*x,2^ 
(1/2))*sin(d*x+c)^(1/2)/(a^2-b^2)/d/e^2/(e*sin(d*x+c))^(1/2)+a*b^2*Ellipti 
cPi(cos(1/2*c+1/4*Pi+1/2*d*x),2*b/(b-(-a^2+b^2)^(1/2)),2^(1/2))*sin(d*x+c) 
^(1/2)/(a^2-b^2)/(a^2-b*(b-(-a^2+b^2)^(1/2)))/d/e^2/(e*sin(d*x+c))^(1/2)+a 
*b^2*EllipticPi(cos(1/2*c+1/4*Pi+1/2*d*x),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2) 
)*sin(d*x+c)^(1/2)/(a^2-b^2)/(a^2-b*(b+(-a^2+b^2)^(1/2)))/d/e^2/(e*sin(d*x 
+c))^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 13.67 (sec) , antiderivative size = 1192, normalized size of antiderivative = 2.67 \[ \int \frac {1}{(a+b \cos (c+d x)) (e \sin (c+d x))^{5/2}} \, dx =\text {Too large to display} \] Input:

Integrate[1/((a + b*Cos[c + d*x])*(e*Sin[c + d*x])^(5/2)),x]
 

Output:

(-2*(-b + a*Cos[c + d*x])*Sin[c + d*x])/(3*(a^2 - b^2)*d*(e*Sin[c + d*x])^ 
(5/2)) + (Sin[c + d*x]^(5/2)*((2*a*b*Cos[c + d*x]^2*(a + b*Sqrt[1 - Sin[c 
+ d*x]^2])*((a*(-2*ArcTan[1 - (Sqrt[2]*Sqrt[b]*Sqrt[Sin[c + d*x]])/(a^2 - 
b^2)^(1/4)] + 2*ArcTan[1 + (Sqrt[2]*Sqrt[b]*Sqrt[Sin[c + d*x]])/(a^2 - b^2 
)^(1/4)] - Log[Sqrt[a^2 - b^2] - Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Si 
n[c + d*x]] + b*Sin[c + d*x]] + Log[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[b]*(a^2 
 - b^2)^(1/4)*Sqrt[Sin[c + d*x]] + b*Sin[c + d*x]]))/(4*Sqrt[2]*Sqrt[b]*(a 
^2 - b^2)^(3/4)) + (5*b*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Sin[c + d* 
x]^2, (b^2*Sin[c + d*x]^2)/(-a^2 + b^2)]*Sqrt[Sin[c + d*x]]*Sqrt[1 - Sin[c 
 + d*x]^2])/((-5*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Sin[c + d*x]^2, ( 
b^2*Sin[c + d*x]^2)/(-a^2 + b^2)] + 2*(2*b^2*AppellF1[5/4, -1/2, 2, 9/4, S 
in[c + d*x]^2, (b^2*Sin[c + d*x]^2)/(-a^2 + b^2)] + (a^2 - b^2)*AppellF1[5 
/4, 1/2, 1, 9/4, Sin[c + d*x]^2, (b^2*Sin[c + d*x]^2)/(-a^2 + b^2)])*Sin[c 
 + d*x]^2)*(a^2 + b^2*(-1 + Sin[c + d*x]^2)))))/((a + b*Cos[c + d*x])*(1 - 
 Sin[c + d*x]^2)) + (2*(a^2 - 3*b^2)*Cos[c + d*x]*(a + b*Sqrt[1 - Sin[c + 
d*x]^2])*(((-1/8 + I/8)*Sqrt[b]*(2*ArcTan[1 - ((1 + I)*Sqrt[b]*Sqrt[Sin[c 
+ d*x]])/(-a^2 + b^2)^(1/4)] - 2*ArcTan[1 + ((1 + I)*Sqrt[b]*Sqrt[Sin[c + 
d*x]])/(-a^2 + b^2)^(1/4)] + Log[Sqrt[-a^2 + b^2] - (1 + I)*Sqrt[b]*(-a^2 
+ b^2)^(1/4)*Sqrt[Sin[c + d*x]] + I*b*Sin[c + d*x]] - Log[Sqrt[-a^2 + b^2] 
 + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Sin[c + d*x]] + I*b*Sin[c + ...
 

Rubi [A] (warning: unable to verify)

Time = 1.88 (sec) , antiderivative size = 429, normalized size of antiderivative = 0.96, number of steps used = 19, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.720, Rules used = {3042, 3175, 27, 3042, 3346, 3042, 3121, 3042, 3120, 3181, 266, 756, 218, 221, 3042, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(e \sin (c+d x))^{5/2} (a+b \cos (c+d x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (e \cos \left (c+d x-\frac {\pi }{2}\right )\right )^{5/2} \left (a-b \sin \left (c+d x-\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 3175

\(\displaystyle \frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}-\frac {2 \int -\frac {a^2+b \cos (c+d x) a-3 b^2}{2 (a+b \cos (c+d x)) \sqrt {e \sin (c+d x)}}dx}{3 e^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a^2+b \cos (c+d x) a-3 b^2}{(a+b \cos (c+d x)) \sqrt {e \sin (c+d x)}}dx}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a^2-b \sin \left (c+d x-\frac {\pi }{2}\right ) a-3 b^2}{\sqrt {e \cos \left (c+d x-\frac {\pi }{2}\right )} \left (a-b \sin \left (c+d x-\frac {\pi }{2}\right )\right )}dx}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3346

\(\displaystyle \frac {a \int \frac {1}{\sqrt {e \sin (c+d x)}}dx-3 b^2 \int \frac {1}{(a+b \cos (c+d x)) \sqrt {e \sin (c+d x)}}dx}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \int \frac {1}{\sqrt {e \sin (c+d x)}}dx-3 b^2 \int \frac {1}{\sqrt {e \cos \left (c+d x-\frac {\pi }{2}\right )} \left (a-b \sin \left (c+d x-\frac {\pi }{2}\right )\right )}dx}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {\frac {a \sqrt {\sin (c+d x)} \int \frac {1}{\sqrt {\sin (c+d x)}}dx}{\sqrt {e \sin (c+d x)}}-3 b^2 \int \frac {1}{\sqrt {e \cos \left (c+d x-\frac {\pi }{2}\right )} \left (a-b \sin \left (c+d x-\frac {\pi }{2}\right )\right )}dx}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \sqrt {\sin (c+d x)} \int \frac {1}{\sqrt {\sin (c+d x)}}dx}{\sqrt {e \sin (c+d x)}}-3 b^2 \int \frac {1}{\sqrt {e \cos \left (c+d x-\frac {\pi }{2}\right )} \left (a-b \sin \left (c+d x-\frac {\pi }{2}\right )\right )}dx}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {2 a \sqrt {\sin (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{d \sqrt {e \sin (c+d x)}}-3 b^2 \int \frac {1}{\sqrt {e \cos \left (c+d x-\frac {\pi }{2}\right )} \left (a-b \sin \left (c+d x-\frac {\pi }{2}\right )\right )}dx}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3181

\(\displaystyle \frac {\frac {2 a \sqrt {\sin (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{d \sqrt {e \sin (c+d x)}}-3 b^2 \left (-\frac {b e \int \frac {1}{\sqrt {e \sin (c+d x)} \left (b^2 \sin ^2(c+d x) e^2+\left (a^2-b^2\right ) e^2\right )}d(e \sin (c+d x))}{d}-\frac {a \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {b^2-a^2}-b \sin (c+d x)\right )}dx}{2 \sqrt {b^2-a^2}}-\frac {a \int \frac {1}{\sqrt {e \sin (c+d x)} \left (b \sin (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2}}\right )}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\frac {2 a \sqrt {\sin (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{d \sqrt {e \sin (c+d x)}}-3 b^2 \left (-\frac {2 b e \int \frac {1}{b^2 e^4 \sin ^4(c+d x)+\left (a^2-b^2\right ) e^2}d\sqrt {e \sin (c+d x)}}{d}-\frac {a \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {b^2-a^2}-b \sin (c+d x)\right )}dx}{2 \sqrt {b^2-a^2}}-\frac {a \int \frac {1}{\sqrt {e \sin (c+d x)} \left (b \sin (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2}}\right )}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

\(\Big \downarrow \) 756

\(\displaystyle \frac {\frac {2 a \sqrt {\sin (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{d \sqrt {e \sin (c+d x)}}-3 b^2 \left (-\frac {2 b e \left (-\frac {\int \frac {1}{\sqrt {b^2-a^2} e-b e^2 \sin ^2(c+d x)}d\sqrt {e \sin (c+d x)}}{2 e \sqrt {b^2-a^2}}-\frac {\int \frac {1}{b e^2 \sin ^2(c+d x)+\sqrt {b^2-a^2} e}d\sqrt {e \sin (c+d x)}}{2 e \sqrt {b^2-a^2}}\right )}{d}-\frac {a \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {b^2-a^2}-b \sin (c+d x)\right )}dx}{2 \sqrt {b^2-a^2}}-\frac {a \int \frac {1}{\sqrt {e \sin (c+d x)} \left (b \sin (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2}}\right )}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {2 a \sqrt {\sin (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{d \sqrt {e \sin (c+d x)}}-3 b^2 \left (-\frac {2 b e \left (-\frac {\int \frac {1}{\sqrt {b^2-a^2} e-b e^2 \sin ^2(c+d x)}d\sqrt {e \sin (c+d x)}}{2 e \sqrt {b^2-a^2}}-\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \sin (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}\right )}{d}-\frac {a \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {b^2-a^2}-b \sin (c+d x)\right )}dx}{2 \sqrt {b^2-a^2}}-\frac {a \int \frac {1}{\sqrt {e \sin (c+d x)} \left (b \sin (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2}}\right )}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {2 a \sqrt {\sin (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{d \sqrt {e \sin (c+d x)}}-3 b^2 \left (-\frac {a \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {b^2-a^2}-b \sin (c+d x)\right )}dx}{2 \sqrt {b^2-a^2}}-\frac {a \int \frac {1}{\sqrt {e \sin (c+d x)} \left (b \sin (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2}}-\frac {2 b e \left (-\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \sin (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {e} \sin (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}\right )}{d}\right )}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 a \sqrt {\sin (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{d \sqrt {e \sin (c+d x)}}-3 b^2 \left (-\frac {a \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {b^2-a^2}-b \sin (c+d x)\right )}dx}{2 \sqrt {b^2-a^2}}-\frac {a \int \frac {1}{\sqrt {e \sin (c+d x)} \left (b \sin (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2}}-\frac {2 b e \left (-\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \sin (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {e} \sin (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}\right )}{d}\right )}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3286

\(\displaystyle \frac {\frac {2 a \sqrt {\sin (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{d \sqrt {e \sin (c+d x)}}-3 b^2 \left (-\frac {a \sqrt {\sin (c+d x)} \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {b^2-a^2}-b \sin (c+d x)\right )}dx}{2 \sqrt {b^2-a^2} \sqrt {e \sin (c+d x)}}-\frac {a \sqrt {\sin (c+d x)} \int \frac {1}{\sqrt {\sin (c+d x)} \left (b \sin (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2} \sqrt {e \sin (c+d x)}}-\frac {2 b e \left (-\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \sin (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {e} \sin (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}\right )}{d}\right )}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 a \sqrt {\sin (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{d \sqrt {e \sin (c+d x)}}-3 b^2 \left (-\frac {a \sqrt {\sin (c+d x)} \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {b^2-a^2}-b \sin (c+d x)\right )}dx}{2 \sqrt {b^2-a^2} \sqrt {e \sin (c+d x)}}-\frac {a \sqrt {\sin (c+d x)} \int \frac {1}{\sqrt {\sin (c+d x)} \left (b \sin (c+d x)+\sqrt {b^2-a^2}\right )}dx}{2 \sqrt {b^2-a^2} \sqrt {e \sin (c+d x)}}-\frac {2 b e \left (-\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \sin (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {e} \sin (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}\right )}{d}\right )}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {\frac {2 a \sqrt {\sin (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{d \sqrt {e \sin (c+d x)}}-3 b^2 \left (-\frac {2 b e \left (-\frac {\arctan \left (\frac {\sqrt {b} \sqrt {e} \sin (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {e} \sin (c+d x)}{\sqrt [4]{b^2-a^2}}\right )}{2 \sqrt {b} e^{3/2} \left (b^2-a^2\right )^{3/4}}\right )}{d}+\frac {a \sqrt {\sin (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {b^2-a^2}},\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{d \sqrt {b^2-a^2} \left (b-\sqrt {b^2-a^2}\right ) \sqrt {e \sin (c+d x)}}-\frac {a \sqrt {\sin (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {b^2-a^2}},\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),2\right )}{d \sqrt {b^2-a^2} \left (\sqrt {b^2-a^2}+b\right ) \sqrt {e \sin (c+d x)}}\right )}{3 e^2 \left (a^2-b^2\right )}+\frac {2 (b-a \cos (c+d x))}{3 d e \left (a^2-b^2\right ) (e \sin (c+d x))^{3/2}}\)

Input:

Int[1/((a + b*Cos[c + d*x])*(e*Sin[c + d*x])^(5/2)),x]
 

Output:

(2*(b - a*Cos[c + d*x]))/(3*(a^2 - b^2)*d*e*(e*Sin[c + d*x])^(3/2)) + ((2* 
a*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(d*Sqrt[e*Sin[c + d 
*x]]) - 3*b^2*((-2*b*e*(-1/2*ArcTan[(Sqrt[b]*Sqrt[e]*Sin[c + d*x])/(-a^2 + 
 b^2)^(1/4)]/(Sqrt[b]*(-a^2 + b^2)^(3/4)*e^(3/2)) - ArcTanh[(Sqrt[b]*Sqrt[ 
e]*Sin[c + d*x])/(-a^2 + b^2)^(1/4)]/(2*Sqrt[b]*(-a^2 + b^2)^(3/4)*e^(3/2) 
)))/d + (a*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (c - Pi/2 + d*x)/2, 2] 
*Sqrt[Sin[c + d*x]])/(Sqrt[-a^2 + b^2]*(b - Sqrt[-a^2 + b^2])*d*Sqrt[e*Sin 
[c + d*x]]) - (a*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (c - Pi/2 + d*x) 
/2, 2]*Sqrt[Sin[c + d*x]])/(Sqrt[-a^2 + b^2]*(b + Sqrt[-a^2 + b^2])*d*Sqrt 
[e*Sin[c + d*x]])))/(3*(a^2 - b^2)*e^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3175
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^ 
(m + 1)*((b - a*Sin[e + f*x])/(f*g*(a^2 - b^2)*(p + 1))), x] + Simp[1/(g^2* 
(a^2 - b^2)*(p + 1))   Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^m* 
(a^2*(p + 2) - b^2*(m + p + 2) + a*b*(m + p + 3)*Sin[e + f*x]), x], x] /; F 
reeQ[{a, b, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegersQ 
[2*m, 2*p]
 

rule 3181
Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])), x_Symbol] :> With[{q = Rt[-a^2 + b^2, 2]}, Simp[-a/(2*q)   Int[1/( 
Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Simp[b*(g/f)   Subst[ 
Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - S 
imp[a/(2*q)   Int[1/(Sqrt[g*Cos[e + f*x]]*(q - b*Cos[e + f*x])), x], x])] / 
; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 3346
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)* 
(x_)]))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d/b   Int 
[(g*Cos[e + f*x])^p, x], x] + Simp[(b*c - a*d)/b   Int[(g*Cos[e + f*x])^p/( 
a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - 
 b^2, 0]
 
Maple [A] (warning: unable to verify)

Time = 2.03 (sec) , antiderivative size = 711, normalized size of antiderivative = 1.59

method result size
default \(\frac {-2 e b \left (-\frac {b^{2} \left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \sin \left (d x +c \right )+\left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}\right )^{\frac {1}{4}} \sqrt {e \sin \left (d x +c \right )}\, \sqrt {2}+\sqrt {\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}}}{e \sin \left (d x +c \right )-\left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}\right )^{\frac {1}{4}} \sqrt {e \sin \left (d x +c \right )}\, \sqrt {2}+\sqrt {\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \sin \left (d x +c \right )}}{\left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \sin \left (d x +c \right )}}{\left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}\right )^{\frac {1}{4}}}-1\right )\right )}{8 e^{2} \left (a -b \right ) \left (a +b \right ) \left (a^{2} e^{2}-b^{2} e^{2}\right )}-\frac {1}{3 e^{2} \left (a^{2}-b^{2}\right ) \left (e \sin \left (d x +c \right )\right )^{\frac {3}{2}}}\right )+\frac {\sqrt {\cos \left (d x +c \right )^{2} e \sin \left (d x +c \right )}\, a \left (\frac {\sqrt {1-\sin \left (d x +c \right )}\, \sqrt {2+2 \sin \left (d x +c \right )}\, \sin \left (d x +c \right )^{\frac {5}{2}} \operatorname {EllipticF}\left (\sqrt {1-\sin \left (d x +c \right )}, \frac {\sqrt {2}}{2}\right )+2 \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )}{3 \left (a^{2}-b^{2}\right ) \sqrt {\cos \left (d x +c \right )^{2} e \sin \left (d x +c \right )}\, \left (\cos \left (d x +c \right )^{2}-1\right )}-\frac {b^{2} \left (-\frac {\sqrt {1-\sin \left (d x +c \right )}\, \sqrt {2+2 \sin \left (d x +c \right )}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {1-\sin \left (d x +c \right )}, \frac {1}{1-\frac {\sqrt {-a^{2}+b^{2}}}{b}}, \frac {\sqrt {2}}{2}\right )}{2 b \sqrt {-a^{2}+b^{2}}\, \sqrt {\cos \left (d x +c \right )^{2} e \sin \left (d x +c \right )}\, \left (1-\frac {\sqrt {-a^{2}+b^{2}}}{b}\right )}+\frac {\sqrt {1-\sin \left (d x +c \right )}\, \sqrt {2+2 \sin \left (d x +c \right )}\, \sqrt {\sin \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {1-\sin \left (d x +c \right )}, \frac {1}{1+\frac {\sqrt {-a^{2}+b^{2}}}{b}}, \frac {\sqrt {2}}{2}\right )}{2 b \sqrt {-a^{2}+b^{2}}\, \sqrt {\cos \left (d x +c \right )^{2} e \sin \left (d x +c \right )}\, \left (1+\frac {\sqrt {-a^{2}+b^{2}}}{b}\right )}\right )}{\left (a -b \right ) \left (a +b \right )}\right )}{e^{2} \cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}}}{d}\) \(711\)

Input:

int(1/(a+cos(d*x+c)*b)/(e*sin(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

(-2*e*b*(-1/8/e^2/(a-b)/(a+b)*b^2*(e^2*(a^2-b^2)/b^2)^(1/4)/(a^2*e^2-b^2*e 
^2)*2^(1/2)*(ln((e*sin(d*x+c)+(e^2*(a^2-b^2)/b^2)^(1/4)*(e*sin(d*x+c))^(1/ 
2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2))/(e*sin(d*x+c)-(e^2*(a^2-b^2)/b^2)^(1 
/4)*(e*sin(d*x+c))^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2)))+2*arctan(2^(1 
/2)/(e^2*(a^2-b^2)/b^2)^(1/4)*(e*sin(d*x+c))^(1/2)+1)+2*arctan(2^(1/2)/(e^ 
2*(a^2-b^2)/b^2)^(1/4)*(e*sin(d*x+c))^(1/2)-1))-1/3/e^2/(a^2-b^2)/(e*sin(d 
*x+c))^(3/2))+(cos(d*x+c)^2*e*sin(d*x+c))^(1/2)*a/e^2*(1/3/(a^2-b^2)/(cos( 
d*x+c)^2*e*sin(d*x+c))^(1/2)/(cos(d*x+c)^2-1)*((1-sin(d*x+c))^(1/2)*(2+2*s 
in(d*x+c))^(1/2)*sin(d*x+c)^(5/2)*EllipticF((1-sin(d*x+c))^(1/2),1/2*2^(1/ 
2))+2*cos(d*x+c)^2*sin(d*x+c))-1/(a-b)/(a+b)*b^2*(-1/2/b/(-a^2+b^2)^(1/2)* 
(1-sin(d*x+c))^(1/2)*(2+2*sin(d*x+c))^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2 
*e*sin(d*x+c))^(1/2)/(1-(-a^2+b^2)^(1/2)/b)*EllipticPi((1-sin(d*x+c))^(1/2 
),1/(1-(-a^2+b^2)^(1/2)/b),1/2*2^(1/2))+1/2/b/(-a^2+b^2)^(1/2)*(1-sin(d*x+ 
c))^(1/2)*(2+2*sin(d*x+c))^(1/2)*sin(d*x+c)^(1/2)/(cos(d*x+c)^2*e*sin(d*x+ 
c))^(1/2)/(1+(-a^2+b^2)^(1/2)/b)*EllipticPi((1-sin(d*x+c))^(1/2),1/(1+(-a^ 
2+b^2)^(1/2)/b),1/2*2^(1/2))))/cos(d*x+c)/(e*sin(d*x+c))^(1/2))/d
 

Fricas [F]

\[ \int \frac {1}{(a+b \cos (c+d x)) (e \sin (c+d x))^{5/2}} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )} \left (e \sin \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/(a+b*cos(d*x+c))/(e*sin(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

integral(-sqrt(e*sin(d*x + c))/((b*e^3*cos(d*x + c)^3 + a*e^3*cos(d*x + c) 
^2 - b*e^3*cos(d*x + c) - a*e^3)*sin(d*x + c)), x)
 

Sympy [F]

\[ \int \frac {1}{(a+b \cos (c+d x)) (e \sin (c+d x))^{5/2}} \, dx=\int \frac {1}{\left (e \sin {\left (c + d x \right )}\right )^{\frac {5}{2}} \left (a + b \cos {\left (c + d x \right )}\right )}\, dx \] Input:

integrate(1/(a+b*cos(d*x+c))/(e*sin(d*x+c))**(5/2),x)
 

Output:

Integral(1/((e*sin(c + d*x))**(5/2)*(a + b*cos(c + d*x))), x)
 

Maxima [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \cos (c+d x)) (e \sin (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(1/(a+b*cos(d*x+c))/(e*sin(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \frac {1}{(a+b \cos (c+d x)) (e \sin (c+d x))^{5/2}} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )} \left (e \sin \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/(a+b*cos(d*x+c))/(e*sin(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

integrate(1/((b*cos(d*x + c) + a)*(e*sin(d*x + c))^(5/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \cos (c+d x)) (e \sin (c+d x))^{5/2}} \, dx=\int \frac {1}{{\left (e\,\sin \left (c+d\,x\right )\right )}^{5/2}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \] Input:

int(1/((e*sin(c + d*x))^(5/2)*(a + b*cos(c + d*x))),x)
 

Output:

int(1/((e*sin(c + d*x))^(5/2)*(a + b*cos(c + d*x))), x)
 

Reduce [F]

\[ \int \frac {1}{(a+b \cos (c+d x)) (e \sin (c+d x))^{5/2}} \, dx=\frac {\sqrt {e}\, \left (\int \frac {\sqrt {\sin \left (d x +c \right )}}{\cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} b +\sin \left (d x +c \right )^{3} a}d x \right )}{e^{3}} \] Input:

int(1/(a+b*cos(d*x+c))/(e*sin(d*x+c))^(5/2),x)
                                                                                    
                                                                                    
 

Output:

(sqrt(e)*int(sqrt(sin(c + d*x))/(cos(c + d*x)*sin(c + d*x)**3*b + sin(c + 
d*x)**3*a),x))/e**3