\(\int \frac {(a+a \cos (e+f x))^2}{(c+d x)^2} \, dx\) [127]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [C] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 159 \[ \int \frac {(a+a \cos (e+f x))^2}{(c+d x)^2} \, dx=-\frac {4 a^2 \cos ^4\left (\frac {e}{2}+\frac {f x}{2}\right )}{d (c+d x)}-\frac {a^2 f \operatorname {CosIntegral}\left (\frac {2 c f}{d}+2 f x\right ) \sin \left (2 e-\frac {2 c f}{d}\right )}{d^2}-\frac {2 a^2 f \operatorname {CosIntegral}\left (\frac {c f}{d}+f x\right ) \sin \left (e-\frac {c f}{d}\right )}{d^2}-\frac {2 a^2 f \cos \left (e-\frac {c f}{d}\right ) \text {Si}\left (\frac {c f}{d}+f x\right )}{d^2}-\frac {a^2 f \cos \left (2 e-\frac {2 c f}{d}\right ) \text {Si}\left (\frac {2 c f}{d}+2 f x\right )}{d^2} \] Output:

-4*a^2*cos(1/2*f*x+1/2*e)^4/d/(d*x+c)+a^2*f*Ci(2*c*f/d+2*f*x)*sin(-2*e+2*c 
*f/d)/d^2+2*a^2*f*Ci(c*f/d+f*x)*sin(-e+c*f/d)/d^2-2*a^2*f*cos(-e+c*f/d)*Si 
(c*f/d+f*x)/d^2-a^2*f*cos(-2*e+2*c*f/d)*Si(2*c*f/d+2*f*x)/d^2
 

Mathematica [A] (verified)

Time = 0.93 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.30 \[ \int \frac {(a+a \cos (e+f x))^2}{(c+d x)^2} \, dx=-\frac {a^2 \left (3 d+4 d \cos (e+f x)+d \cos (2 (e+f x))+2 f (c+d x) \operatorname {CosIntegral}\left (\frac {2 f (c+d x)}{d}\right ) \sin \left (2 e-\frac {2 c f}{d}\right )+4 f (c+d x) \operatorname {CosIntegral}\left (f \left (\frac {c}{d}+x\right )\right ) \sin \left (e-\frac {c f}{d}\right )+4 c f \cos \left (e-\frac {c f}{d}\right ) \text {Si}\left (f \left (\frac {c}{d}+x\right )\right )+4 d f x \cos \left (e-\frac {c f}{d}\right ) \text {Si}\left (f \left (\frac {c}{d}+x\right )\right )+2 c f \cos \left (2 e-\frac {2 c f}{d}\right ) \text {Si}\left (\frac {2 f (c+d x)}{d}\right )+2 d f x \cos \left (2 e-\frac {2 c f}{d}\right ) \text {Si}\left (\frac {2 f (c+d x)}{d}\right )\right )}{2 d^2 (c+d x)} \] Input:

Integrate[(a + a*Cos[e + f*x])^2/(c + d*x)^2,x]
 

Output:

-1/2*(a^2*(3*d + 4*d*Cos[e + f*x] + d*Cos[2*(e + f*x)] + 2*f*(c + d*x)*Cos 
Integral[(2*f*(c + d*x))/d]*Sin[2*e - (2*c*f)/d] + 4*f*(c + d*x)*CosIntegr 
al[f*(c/d + x)]*Sin[e - (c*f)/d] + 4*c*f*Cos[e - (c*f)/d]*SinIntegral[f*(c 
/d + x)] + 4*d*f*x*Cos[e - (c*f)/d]*SinIntegral[f*(c/d + x)] + 2*c*f*Cos[2 
*e - (2*c*f)/d]*SinIntegral[(2*f*(c + d*x))/d] + 2*d*f*x*Cos[2*e - (2*c*f) 
/d]*SinIntegral[(2*f*(c + d*x))/d]))/(d^2*(c + d*x))
 

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.01, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3042, 3799, 3042, 3794, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (e+f x)+a)^2}{(c+d x)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (e+f x+\frac {\pi }{2}\right )+a\right )^2}{(c+d x)^2}dx\)

\(\Big \downarrow \) 3799

\(\displaystyle 4 a^2 \int \frac {\cos ^4\left (\frac {e}{2}+\frac {f x}{2}\right )}{(c+d x)^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle 4 a^2 \int \frac {\sin \left (\frac {e}{2}+\frac {f x}{2}+\frac {\pi }{2}\right )^4}{(c+d x)^2}dx\)

\(\Big \downarrow \) 3794

\(\displaystyle 4 a^2 \left (\frac {2 f \int \left (-\frac {\sin (e+f x)}{4 (c+d x)}-\frac {\sin (2 e+2 f x)}{8 (c+d x)}\right )dx}{d}-\frac {\cos ^4\left (\frac {e}{2}+\frac {f x}{2}\right )}{d (c+d x)}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle 4 a^2 \left (\frac {2 f \left (-\frac {\operatorname {CosIntegral}\left (2 x f+\frac {2 c f}{d}\right ) \sin \left (2 e-\frac {2 c f}{d}\right )}{8 d}-\frac {\operatorname {CosIntegral}\left (x f+\frac {c f}{d}\right ) \sin \left (e-\frac {c f}{d}\right )}{4 d}-\frac {\cos \left (e-\frac {c f}{d}\right ) \text {Si}\left (x f+\frac {c f}{d}\right )}{4 d}-\frac {\cos \left (2 e-\frac {2 c f}{d}\right ) \text {Si}\left (2 x f+\frac {2 c f}{d}\right )}{8 d}\right )}{d}-\frac {\cos ^4\left (\frac {e}{2}+\frac {f x}{2}\right )}{d (c+d x)}\right )\)

Input:

Int[(a + a*Cos[e + f*x])^2/(c + d*x)^2,x]
 

Output:

4*a^2*(-(Cos[e/2 + (f*x)/2]^4/(d*(c + d*x))) + (2*f*(-1/8*(CosIntegral[(2* 
c*f)/d + 2*f*x]*Sin[2*e - (2*c*f)/d])/d - (CosIntegral[(c*f)/d + f*x]*Sin[ 
e - (c*f)/d])/(4*d) - (Cos[e - (c*f)/d]*SinIntegral[(c*f)/d + f*x])/(4*d) 
- (Cos[2*e - (2*c*f)/d]*SinIntegral[(2*c*f)/d + 2*f*x])/(8*d)))/d)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3794
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Si 
mp[(c + d*x)^(m + 1)*(Sin[e + f*x]^n/(d*(m + 1))), x] - Simp[f*(n/(d*(m + 1 
)))   Int[ExpandTrigReduce[(c + d*x)^(m + 1), Cos[e + f*x]*Sin[e + f*x]^(n 
- 1), x], x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && GeQ[m, -2] & 
& LtQ[m, -1]
 

rule 3799
Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_.) 
, x_Symbol] :> Simp[(2*a)^n   Int[(c + d*x)^m*Sin[(1/2)*(e + Pi*(a/(2*b))) 
+ f*(x/2)]^(2*n), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[a^2 - b^ 
2, 0] && IntegerQ[n] && (GtQ[n, 0] || IGtQ[m, 0])
 
Maple [A] (verified)

Time = 2.12 (sec) , antiderivative size = 276, normalized size of antiderivative = 1.74

method result size
derivativedivides \(\frac {\frac {a^{2} f^{2} \left (-\frac {2 \cos \left (2 f x +2 e \right )}{\left (c f -d e +d \left (f x +e \right )\right ) d}-\frac {2 \left (\frac {2 \,\operatorname {Si}\left (2 f x +2 e +\frac {2 c f -2 d e}{d}\right ) \cos \left (\frac {2 c f -2 d e}{d}\right )}{d}-\frac {2 \,\operatorname {Ci}\left (2 f x +2 e +\frac {2 c f -2 d e}{d}\right ) \sin \left (\frac {2 c f -2 d e}{d}\right )}{d}\right )}{d}\right )}{4}-\frac {3 a^{2} f^{2}}{2 \left (c f -d e +d \left (f x +e \right )\right ) d}+2 a^{2} f^{2} \left (-\frac {\cos \left (f x +e \right )}{\left (c f -d e +d \left (f x +e \right )\right ) d}-\frac {\frac {\operatorname {Si}\left (f x +e +\frac {c f -d e}{d}\right ) \cos \left (\frac {c f -d e}{d}\right )}{d}-\frac {\operatorname {Ci}\left (f x +e +\frac {c f -d e}{d}\right ) \sin \left (\frac {c f -d e}{d}\right )}{d}}{d}\right )}{f}\) \(276\)
default \(\frac {\frac {a^{2} f^{2} \left (-\frac {2 \cos \left (2 f x +2 e \right )}{\left (c f -d e +d \left (f x +e \right )\right ) d}-\frac {2 \left (\frac {2 \,\operatorname {Si}\left (2 f x +2 e +\frac {2 c f -2 d e}{d}\right ) \cos \left (\frac {2 c f -2 d e}{d}\right )}{d}-\frac {2 \,\operatorname {Ci}\left (2 f x +2 e +\frac {2 c f -2 d e}{d}\right ) \sin \left (\frac {2 c f -2 d e}{d}\right )}{d}\right )}{d}\right )}{4}-\frac {3 a^{2} f^{2}}{2 \left (c f -d e +d \left (f x +e \right )\right ) d}+2 a^{2} f^{2} \left (-\frac {\cos \left (f x +e \right )}{\left (c f -d e +d \left (f x +e \right )\right ) d}-\frac {\frac {\operatorname {Si}\left (f x +e +\frac {c f -d e}{d}\right ) \cos \left (\frac {c f -d e}{d}\right )}{d}-\frac {\operatorname {Ci}\left (f x +e +\frac {c f -d e}{d}\right ) \sin \left (\frac {c f -d e}{d}\right )}{d}}{d}\right )}{f}\) \(276\)
parts \(-\frac {a^{2}}{d \left (d x +c \right )}+\frac {a^{2} \left (\frac {f^{2} \left (-\frac {2 \cos \left (2 f x +2 e \right )}{\left (c f -d e +d \left (f x +e \right )\right ) d}-\frac {2 \left (\frac {2 \,\operatorname {Si}\left (2 f x +2 e +\frac {2 c f -2 d e}{d}\right ) \cos \left (\frac {2 c f -2 d e}{d}\right )}{d}-\frac {2 \,\operatorname {Ci}\left (2 f x +2 e +\frac {2 c f -2 d e}{d}\right ) \sin \left (\frac {2 c f -2 d e}{d}\right )}{d}\right )}{d}\right )}{4}-\frac {f^{2}}{2 \left (c f -d e +d \left (f x +e \right )\right ) d}\right )}{f}+2 a^{2} f \left (-\frac {\cos \left (f x +e \right )}{\left (c f -d e +d \left (f x +e \right )\right ) d}-\frac {\frac {\operatorname {Si}\left (f x +e +\frac {c f -d e}{d}\right ) \cos \left (\frac {c f -d e}{d}\right )}{d}-\frac {\operatorname {Ci}\left (f x +e +\frac {c f -d e}{d}\right ) \sin \left (\frac {c f -d e}{d}\right )}{d}}{d}\right )\) \(287\)
risch \(\frac {i a^{2} f \,{\mathrm e}^{\frac {i \left (c f -d e \right )}{d}} \operatorname {expIntegral}_{1}\left (i f x +i e +\frac {i \left (c f -d e \right )}{d}\right )}{d^{2}}-\frac {i f \,a^{2} {\mathrm e}^{-\frac {i \left (c f -d e \right )}{d}} \operatorname {expIntegral}_{1}\left (-i f x -i e -\frac {i c f -i d e}{d}\right )}{d^{2}}-\frac {3 a^{2}}{2 d \left (d x +c \right )}+\frac {i a^{2} f \,{\mathrm e}^{\frac {2 i \left (c f -d e \right )}{d}} \operatorname {expIntegral}_{1}\left (2 i f x +2 i e +\frac {2 i \left (c f -d e \right )}{d}\right )}{2 d^{2}}-\frac {i f \,a^{2} {\mathrm e}^{-\frac {2 i \left (c f -d e \right )}{d}} \operatorname {expIntegral}_{1}\left (-2 i f x -2 i e -\frac {2 \left (i c f -i d e \right )}{d}\right )}{2 d^{2}}-\frac {a^{2} \left (-2 d x f -2 c f \right ) \cos \left (f x +e \right )}{d \left (d x +c \right ) \left (-d x f -c f \right )}-\frac {a^{2} \left (-2 d x f -2 c f \right ) \cos \left (2 f x +2 e \right )}{4 d \left (d x +c \right ) \left (-d x f -c f \right )}\) \(314\)

Input:

int((a+cos(f*x+e)*a)^2/(d*x+c)^2,x,method=_RETURNVERBOSE)
 

Output:

1/f*(1/4*a^2*f^2*(-2*cos(2*f*x+2*e)/(c*f-d*e+d*(f*x+e))/d-2*(2*Si(2*f*x+2* 
e+2*(c*f-d*e)/d)*cos(2*(c*f-d*e)/d)/d-2*Ci(2*f*x+2*e+2*(c*f-d*e)/d)*sin(2* 
(c*f-d*e)/d)/d)/d)-3/2*a^2*f^2/(c*f-d*e+d*(f*x+e))/d+2*a^2*f^2*(-cos(f*x+e 
)/(c*f-d*e+d*(f*x+e))/d-(Si(f*x+e+(c*f-d*e)/d)*cos((c*f-d*e)/d)/d-Ci(f*x+e 
+(c*f-d*e)/d)*sin((c*f-d*e)/d)/d)/d))
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.38 \[ \int \frac {(a+a \cos (e+f x))^2}{(c+d x)^2} \, dx=-\frac {a^{2} d \cos \left (f x + e\right )^{2} + 2 \, a^{2} d \cos \left (f x + e\right ) + a^{2} d - 2 \, {\left (a^{2} d f x + a^{2} c f\right )} \operatorname {Ci}\left (\frac {d f x + c f}{d}\right ) \sin \left (-\frac {d e - c f}{d}\right ) - {\left (a^{2} d f x + a^{2} c f\right )} \operatorname {Ci}\left (\frac {2 \, {\left (d f x + c f\right )}}{d}\right ) \sin \left (-\frac {2 \, {\left (d e - c f\right )}}{d}\right ) + {\left (a^{2} d f x + a^{2} c f\right )} \cos \left (-\frac {2 \, {\left (d e - c f\right )}}{d}\right ) \operatorname {Si}\left (\frac {2 \, {\left (d f x + c f\right )}}{d}\right ) + 2 \, {\left (a^{2} d f x + a^{2} c f\right )} \cos \left (-\frac {d e - c f}{d}\right ) \operatorname {Si}\left (\frac {d f x + c f}{d}\right )}{d^{3} x + c d^{2}} \] Input:

integrate((a+a*cos(f*x+e))^2/(d*x+c)^2,x, algorithm="fricas")
 

Output:

-(a^2*d*cos(f*x + e)^2 + 2*a^2*d*cos(f*x + e) + a^2*d - 2*(a^2*d*f*x + a^2 
*c*f)*cos_integral((d*f*x + c*f)/d)*sin(-(d*e - c*f)/d) - (a^2*d*f*x + a^2 
*c*f)*cos_integral(2*(d*f*x + c*f)/d)*sin(-2*(d*e - c*f)/d) + (a^2*d*f*x + 
 a^2*c*f)*cos(-2*(d*e - c*f)/d)*sin_integral(2*(d*f*x + c*f)/d) + 2*(a^2*d 
*f*x + a^2*c*f)*cos(-(d*e - c*f)/d)*sin_integral((d*f*x + c*f)/d))/(d^3*x 
+ c*d^2)
 

Sympy [F]

\[ \int \frac {(a+a \cos (e+f x))^2}{(c+d x)^2} \, dx=a^{2} \left (\int \frac {2 \cos {\left (e + f x \right )}}{c^{2} + 2 c d x + d^{2} x^{2}}\, dx + \int \frac {\cos ^{2}{\left (e + f x \right )}}{c^{2} + 2 c d x + d^{2} x^{2}}\, dx + \int \frac {1}{c^{2} + 2 c d x + d^{2} x^{2}}\, dx\right ) \] Input:

integrate((a+a*cos(f*x+e))**2/(d*x+c)**2,x)
 

Output:

a**2*(Integral(2*cos(e + f*x)/(c**2 + 2*c*d*x + d**2*x**2), x) + Integral( 
cos(e + f*x)**2/(c**2 + 2*c*d*x + d**2*x**2), x) + Integral(1/(c**2 + 2*c* 
d*x + d**2*x**2), x))
 

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.16 (sec) , antiderivative size = 372, normalized size of antiderivative = 2.34 \[ \int \frac {(a+a \cos (e+f x))^2}{(c+d x)^2} \, dx=-\frac {\frac {4 \, a^{2} f^{2}}{{\left (f x + e\right )} d^{2} - d^{2} e + c d f} + \frac {4 \, {\left (f^{2} {\left (E_{2}\left (\frac {i \, {\left (f x + e\right )} d - i \, d e + i \, c f}{d}\right ) + E_{2}\left (-\frac {i \, {\left (f x + e\right )} d - i \, d e + i \, c f}{d}\right )\right )} \cos \left (-\frac {d e - c f}{d}\right ) - f^{2} {\left (-i \, E_{2}\left (\frac {i \, {\left (f x + e\right )} d - i \, d e + i \, c f}{d}\right ) + i \, E_{2}\left (-\frac {i \, {\left (f x + e\right )} d - i \, d e + i \, c f}{d}\right )\right )} \sin \left (-\frac {d e - c f}{d}\right )\right )} a^{2}}{{\left (f x + e\right )} d^{2} - d^{2} e + c d f} + \frac {{\left (f^{2} {\left (E_{2}\left (\frac {2 \, {\left (-i \, {\left (f x + e\right )} d + i \, d e - i \, c f\right )}}{d}\right ) + E_{2}\left (-\frac {2 \, {\left (-i \, {\left (f x + e\right )} d + i \, d e - i \, c f\right )}}{d}\right )\right )} \cos \left (-\frac {2 \, {\left (d e - c f\right )}}{d}\right ) - f^{2} {\left (i \, E_{2}\left (\frac {2 \, {\left (-i \, {\left (f x + e\right )} d + i \, d e - i \, c f\right )}}{d}\right ) - i \, E_{2}\left (-\frac {2 \, {\left (-i \, {\left (f x + e\right )} d + i \, d e - i \, c f\right )}}{d}\right )\right )} \sin \left (-\frac {2 \, {\left (d e - c f\right )}}{d}\right ) + 2 \, f^{2}\right )} a^{2}}{{\left (f x + e\right )} d^{2} - d^{2} e + c d f}}{4 \, f} \] Input:

integrate((a+a*cos(f*x+e))^2/(d*x+c)^2,x, algorithm="maxima")
 

Output:

-1/4*(4*a^2*f^2/((f*x + e)*d^2 - d^2*e + c*d*f) + 4*(f^2*(exp_integral_e(2 
, (I*(f*x + e)*d - I*d*e + I*c*f)/d) + exp_integral_e(2, -(I*(f*x + e)*d - 
 I*d*e + I*c*f)/d))*cos(-(d*e - c*f)/d) - f^2*(-I*exp_integral_e(2, (I*(f* 
x + e)*d - I*d*e + I*c*f)/d) + I*exp_integral_e(2, -(I*(f*x + e)*d - I*d*e 
 + I*c*f)/d))*sin(-(d*e - c*f)/d))*a^2/((f*x + e)*d^2 - d^2*e + c*d*f) + ( 
f^2*(exp_integral_e(2, 2*(-I*(f*x + e)*d + I*d*e - I*c*f)/d) + exp_integra 
l_e(2, -2*(-I*(f*x + e)*d + I*d*e - I*c*f)/d))*cos(-2*(d*e - c*f)/d) - f^2 
*(I*exp_integral_e(2, 2*(-I*(f*x + e)*d + I*d*e - I*c*f)/d) - I*exp_integr 
al_e(2, -2*(-I*(f*x + e)*d + I*d*e - I*c*f)/d))*sin(-2*(d*e - c*f)/d) + 2* 
f^2)*a^2/((f*x + e)*d^2 - d^2*e + c*d*f))/f
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1049 vs. \(2 (156) = 312\).

Time = 0.50 (sec) , antiderivative size = 1049, normalized size of antiderivative = 6.60 \[ \int \frac {(a+a \cos (e+f x))^2}{(c+d x)^2} \, dx=\text {Too large to display} \] Input:

integrate((a+a*cos(f*x+e))^2/(d*x+c)^2,x, algorithm="giac")
 

Output:

1/2*(4*(d*x + c)*a^2*(d*e/(d*x + c) - c*f/(d*x + c) + f)*f^2*cos_integral( 
((d*x + c)*(d*e/(d*x + c) - c*f/(d*x + c) + f) - d*e + c*f)/d)*sin(-(d*e - 
 c*f)/d) - 4*a^2*d*e*f^2*cos_integral(((d*x + c)*(d*e/(d*x + c) - c*f/(d*x 
 + c) + f) - d*e + c*f)/d)*sin(-(d*e - c*f)/d) + 4*a^2*c*f^3*cos_integral( 
((d*x + c)*(d*e/(d*x + c) - c*f/(d*x + c) + f) - d*e + c*f)/d)*sin(-(d*e - 
 c*f)/d) + 2*(d*x + c)*a^2*(d*e/(d*x + c) - c*f/(d*x + c) + f)*f^2*cos_int 
egral(2*((d*x + c)*(d*e/(d*x + c) - c*f/(d*x + c) + f) - d*e + c*f)/d)*sin 
(-2*(d*e - c*f)/d) - 2*a^2*d*e*f^2*cos_integral(2*((d*x + c)*(d*e/(d*x + c 
) - c*f/(d*x + c) + f) - d*e + c*f)/d)*sin(-2*(d*e - c*f)/d) + 2*a^2*c*f^3 
*cos_integral(2*((d*x + c)*(d*e/(d*x + c) - c*f/(d*x + c) + f) - d*e + c*f 
)/d)*sin(-2*(d*e - c*f)/d) - 2*(d*x + c)*a^2*(d*e/(d*x + c) - c*f/(d*x + c 
) + f)*f^2*cos(-2*(d*e - c*f)/d)*sin_integral(2*((d*x + c)*(d*e/(d*x + c) 
- c*f/(d*x + c) + f) - d*e + c*f)/d) + 2*a^2*d*e*f^2*cos(-2*(d*e - c*f)/d) 
*sin_integral(2*((d*x + c)*(d*e/(d*x + c) - c*f/(d*x + c) + f) - d*e + c*f 
)/d) - 2*a^2*c*f^3*cos(-2*(d*e - c*f)/d)*sin_integral(2*((d*x + c)*(d*e/(d 
*x + c) - c*f/(d*x + c) + f) - d*e + c*f)/d) - 4*(d*x + c)*a^2*(d*e/(d*x + 
 c) - c*f/(d*x + c) + f)*f^2*cos(-(d*e - c*f)/d)*sin_integral(((d*x + c)*( 
d*e/(d*x + c) - c*f/(d*x + c) + f) - d*e + c*f)/d) + 4*a^2*d*e*f^2*cos(-(d 
*e - c*f)/d)*sin_integral(((d*x + c)*(d*e/(d*x + c) - c*f/(d*x + c) + f) - 
 d*e + c*f)/d) - 4*a^2*c*f^3*cos(-(d*e - c*f)/d)*sin_integral(((d*x + c...
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (e+f x))^2}{(c+d x)^2} \, dx=\int \frac {{\left (a+a\,\cos \left (e+f\,x\right )\right )}^2}{{\left (c+d\,x\right )}^2} \,d x \] Input:

int((a + a*cos(e + f*x))^2/(c + d*x)^2,x)
 

Output:

int((a + a*cos(e + f*x))^2/(c + d*x)^2, x)
 

Reduce [F]

\[ \int \frac {(a+a \cos (e+f x))^2}{(c+d x)^2} \, dx=\frac {a^{2} \left (2 \left (\int \frac {\cos \left (f x +e \right )}{d^{2} x^{2}+2 c d x +c^{2}}d x \right ) c^{2}+2 \left (\int \frac {\cos \left (f x +e \right )}{d^{2} x^{2}+2 c d x +c^{2}}d x \right ) c d x +\left (\int \frac {\cos \left (f x +e \right )^{2}}{d^{2} x^{2}+2 c d x +c^{2}}d x \right ) c^{2}+\left (\int \frac {\cos \left (f x +e \right )^{2}}{d^{2} x^{2}+2 c d x +c^{2}}d x \right ) c d x +2 \left (\int \frac {1}{d^{2} x^{2}+2 c d x +c^{2}}d x \right ) c^{2}+2 \left (\int \frac {1}{d^{2} x^{2}+2 c d x +c^{2}}d x \right ) c d x -x \right )}{c \left (d x +c \right )} \] Input:

int((a+a*cos(f*x+e))^2/(d*x+c)^2,x)
 

Output:

(a**2*(2*int(cos(e + f*x)/(c**2 + 2*c*d*x + d**2*x**2),x)*c**2 + 2*int(cos 
(e + f*x)/(c**2 + 2*c*d*x + d**2*x**2),x)*c*d*x + int(cos(e + f*x)**2/(c** 
2 + 2*c*d*x + d**2*x**2),x)*c**2 + int(cos(e + f*x)**2/(c**2 + 2*c*d*x + d 
**2*x**2),x)*c*d*x + 2*int(1/(c**2 + 2*c*d*x + d**2*x**2),x)*c**2 + 2*int( 
1/(c**2 + 2*c*d*x + d**2*x**2),x)*c*d*x - x))/(c*(c + d*x))