\(\int \frac {\cos ^3(a+b x)}{(c+d x)^{7/2}} \, dx\) [62]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [C] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 356 \[ \int \frac {\cos ^3(a+b x)}{(c+d x)^{7/2}} \, dx=-\frac {16 b^2 \cos (a+b x)}{5 d^3 \sqrt {c+d x}}-\frac {2 \cos ^3(a+b x)}{5 d (c+d x)^{5/2}}+\frac {24 b^2 \cos ^3(a+b x)}{5 d^3 \sqrt {c+d x}}+\frac {2 b^{5/2} \sqrt {2 \pi } \cos \left (a-\frac {b c}{d}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{5 d^{7/2}}+\frac {6 b^{5/2} \sqrt {6 \pi } \cos \left (3 a-\frac {3 b c}{d}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {b} \sqrt {\frac {6}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{5 d^{7/2}}+\frac {6 b^{5/2} \sqrt {6 \pi } \operatorname {FresnelC}\left (\frac {\sqrt {b} \sqrt {\frac {6}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right ) \sin \left (3 a-\frac {3 b c}{d}\right )}{5 d^{7/2}}+\frac {2 b^{5/2} \sqrt {2 \pi } \operatorname {FresnelC}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right ) \sin \left (a-\frac {b c}{d}\right )}{5 d^{7/2}}+\frac {4 b \cos ^2(a+b x) \sin (a+b x)}{5 d^2 (c+d x)^{3/2}} \] Output:

-16/5*b^2*cos(b*x+a)/d^3/(d*x+c)^(1/2)-2/5*cos(b*x+a)^3/d/(d*x+c)^(5/2)+24 
/5*b^2*cos(b*x+a)^3/d^3/(d*x+c)^(1/2)+2/5*b^(5/2)*2^(1/2)*Pi^(1/2)*cos(a-b 
*c/d)*FresnelS(b^(1/2)*2^(1/2)/Pi^(1/2)*(d*x+c)^(1/2)/d^(1/2))/d^(7/2)+6/5 
*b^(5/2)*6^(1/2)*Pi^(1/2)*cos(3*a-3*b*c/d)*FresnelS(b^(1/2)*6^(1/2)/Pi^(1/ 
2)*(d*x+c)^(1/2)/d^(1/2))/d^(7/2)+6/5*b^(5/2)*6^(1/2)*Pi^(1/2)*FresnelC(b^ 
(1/2)*6^(1/2)/Pi^(1/2)*(d*x+c)^(1/2)/d^(1/2))*sin(3*a-3*b*c/d)/d^(7/2)+2/5 
*b^(5/2)*2^(1/2)*Pi^(1/2)*FresnelC(b^(1/2)*2^(1/2)/Pi^(1/2)*(d*x+c)^(1/2)/ 
d^(1/2))*sin(a-b*c/d)/d^(7/2)+4/5*b*cos(b*x+a)^2*sin(b*x+a)/d^2/(d*x+c)^(3 
/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.60 (sec) , antiderivative size = 448, normalized size of antiderivative = 1.26 \[ \int \frac {\cos ^3(a+b x)}{(c+d x)^{7/2}} \, dx=\frac {e^{-3 i a} \left (2 e^{4 i a} \left (-3 d^2 e^{i b x}+2 b e^{-\frac {i b c}{d}} (c+d x) \left (e^{\frac {i b (c+d x)}{d}} (-i d+2 b (c+d x))-2 i d \left (-\frac {i b (c+d x)}{d}\right )^{3/2} \Gamma \left (\frac {1}{2},-\frac {i b (c+d x)}{d}\right )\right )\right )+e^{2 i a-i b x} \left (-6 d^2+4 i b d (c+d x)+8 b^2 (c+d x)^2+8 d^2 e^{\frac {i b (c+d x)}{d}} \left (\frac {i b (c+d x)}{d}\right )^{5/2} \Gamma \left (\frac {1}{2},\frac {i b (c+d x)}{d}\right )\right )+2 e^{6 i a} \left (-d^2 e^{3 i b x}+2 b e^{-\frac {3 i b c}{d}} (c+d x) \left (e^{\frac {3 i b (c+d x)}{d}} (-i d+6 b (c+d x))-6 i \sqrt {3} d \left (-\frac {i b (c+d x)}{d}\right )^{3/2} \Gamma \left (\frac {1}{2},-\frac {3 i b (c+d x)}{d}\right )\right )\right )+2 e^{-3 i b x} \left (-d^2-i b (c+d x) \left (-2 d+12 i b (c+d x)-12 \sqrt {3} d e^{\frac {3 i b (c+d x)}{d}} \left (\frac {i b (c+d x)}{d}\right )^{3/2} \Gamma \left (\frac {1}{2},\frac {3 i b (c+d x)}{d}\right )\right )\right )\right )}{40 d^3 (c+d x)^{5/2}} \] Input:

Integrate[Cos[a + b*x]^3/(c + d*x)^(7/2),x]
 

Output:

(2*E^((4*I)*a)*(-3*d^2*E^(I*b*x) + (2*b*(c + d*x)*(E^((I*b*(c + d*x))/d)*( 
(-I)*d + 2*b*(c + d*x)) - (2*I)*d*(((-I)*b*(c + d*x))/d)^(3/2)*Gamma[1/2, 
((-I)*b*(c + d*x))/d]))/E^((I*b*c)/d)) + E^((2*I)*a - I*b*x)*(-6*d^2 + (4* 
I)*b*d*(c + d*x) + 8*b^2*(c + d*x)^2 + 8*d^2*E^((I*b*(c + d*x))/d)*((I*b*( 
c + d*x))/d)^(5/2)*Gamma[1/2, (I*b*(c + d*x))/d]) + 2*E^((6*I)*a)*(-(d^2*E 
^((3*I)*b*x)) + (2*b*(c + d*x)*(E^(((3*I)*b*(c + d*x))/d)*((-I)*d + 6*b*(c 
 + d*x)) - (6*I)*Sqrt[3]*d*(((-I)*b*(c + d*x))/d)^(3/2)*Gamma[1/2, ((-3*I) 
*b*(c + d*x))/d]))/E^(((3*I)*b*c)/d)) + (2*(-d^2 - I*b*(c + d*x)*(-2*d + ( 
12*I)*b*(c + d*x) - 12*Sqrt[3]*d*E^(((3*I)*b*(c + d*x))/d)*((I*b*(c + d*x) 
)/d)^(3/2)*Gamma[1/2, ((3*I)*b*(c + d*x))/d])))/E^((3*I)*b*x))/(40*d^3*E^( 
(3*I)*a)*(c + d*x)^(5/2))
 

Rubi [A] (verified)

Time = 1.79 (sec) , antiderivative size = 506, normalized size of antiderivative = 1.42, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.778, Rules used = {3042, 3795, 3042, 3778, 25, 3042, 3787, 3042, 3785, 3786, 3794, 2009, 3832, 3833}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^3(a+b x)}{(c+d x)^{7/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (a+b x+\frac {\pi }{2}\right )^3}{(c+d x)^{7/2}}dx\)

\(\Big \downarrow \) 3795

\(\displaystyle -\frac {12 b^2 \int \frac {\cos ^3(a+b x)}{(c+d x)^{3/2}}dx}{5 d^2}+\frac {8 b^2 \int \frac {\cos (a+b x)}{(c+d x)^{3/2}}dx}{5 d^2}+\frac {4 b \sin (a+b x) \cos ^2(a+b x)}{5 d^2 (c+d x)^{3/2}}-\frac {2 \cos ^3(a+b x)}{5 d (c+d x)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {8 b^2 \int \frac {\sin \left (a+b x+\frac {\pi }{2}\right )}{(c+d x)^{3/2}}dx}{5 d^2}-\frac {12 b^2 \int \frac {\sin \left (a+b x+\frac {\pi }{2}\right )^3}{(c+d x)^{3/2}}dx}{5 d^2}+\frac {4 b \sin (a+b x) \cos ^2(a+b x)}{5 d^2 (c+d x)^{3/2}}-\frac {2 \cos ^3(a+b x)}{5 d (c+d x)^{5/2}}\)

\(\Big \downarrow \) 3778

\(\displaystyle -\frac {12 b^2 \int \frac {\sin \left (a+b x+\frac {\pi }{2}\right )^3}{(c+d x)^{3/2}}dx}{5 d^2}+\frac {8 b^2 \left (\frac {2 b \int -\frac {\sin (a+b x)}{\sqrt {c+d x}}dx}{d}-\frac {2 \cos (a+b x)}{d \sqrt {c+d x}}\right )}{5 d^2}+\frac {4 b \sin (a+b x) \cos ^2(a+b x)}{5 d^2 (c+d x)^{3/2}}-\frac {2 \cos ^3(a+b x)}{5 d (c+d x)^{5/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {12 b^2 \int \frac {\sin \left (a+b x+\frac {\pi }{2}\right )^3}{(c+d x)^{3/2}}dx}{5 d^2}+\frac {8 b^2 \left (-\frac {2 b \int \frac {\sin (a+b x)}{\sqrt {c+d x}}dx}{d}-\frac {2 \cos (a+b x)}{d \sqrt {c+d x}}\right )}{5 d^2}+\frac {4 b \sin (a+b x) \cos ^2(a+b x)}{5 d^2 (c+d x)^{3/2}}-\frac {2 \cos ^3(a+b x)}{5 d (c+d x)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {12 b^2 \int \frac {\sin \left (a+b x+\frac {\pi }{2}\right )^3}{(c+d x)^{3/2}}dx}{5 d^2}+\frac {8 b^2 \left (-\frac {2 b \int \frac {\sin (a+b x)}{\sqrt {c+d x}}dx}{d}-\frac {2 \cos (a+b x)}{d \sqrt {c+d x}}\right )}{5 d^2}+\frac {4 b \sin (a+b x) \cos ^2(a+b x)}{5 d^2 (c+d x)^{3/2}}-\frac {2 \cos ^3(a+b x)}{5 d (c+d x)^{5/2}}\)

\(\Big \downarrow \) 3787

\(\displaystyle -\frac {12 b^2 \int \frac {\sin \left (a+b x+\frac {\pi }{2}\right )^3}{(c+d x)^{3/2}}dx}{5 d^2}+\frac {8 b^2 \left (-\frac {2 b \left (\sin \left (a-\frac {b c}{d}\right ) \int \frac {\cos \left (\frac {b c}{d}+b x\right )}{\sqrt {c+d x}}dx+\cos \left (a-\frac {b c}{d}\right ) \int \frac {\sin \left (\frac {b c}{d}+b x\right )}{\sqrt {c+d x}}dx\right )}{d}-\frac {2 \cos (a+b x)}{d \sqrt {c+d x}}\right )}{5 d^2}+\frac {4 b \sin (a+b x) \cos ^2(a+b x)}{5 d^2 (c+d x)^{3/2}}-\frac {2 \cos ^3(a+b x)}{5 d (c+d x)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {12 b^2 \int \frac {\sin \left (a+b x+\frac {\pi }{2}\right )^3}{(c+d x)^{3/2}}dx}{5 d^2}+\frac {8 b^2 \left (-\frac {2 b \left (\sin \left (a-\frac {b c}{d}\right ) \int \frac {\sin \left (\frac {b c}{d}+b x+\frac {\pi }{2}\right )}{\sqrt {c+d x}}dx+\cos \left (a-\frac {b c}{d}\right ) \int \frac {\sin \left (\frac {b c}{d}+b x\right )}{\sqrt {c+d x}}dx\right )}{d}-\frac {2 \cos (a+b x)}{d \sqrt {c+d x}}\right )}{5 d^2}+\frac {4 b \sin (a+b x) \cos ^2(a+b x)}{5 d^2 (c+d x)^{3/2}}-\frac {2 \cos ^3(a+b x)}{5 d (c+d x)^{5/2}}\)

\(\Big \downarrow \) 3785

\(\displaystyle -\frac {12 b^2 \int \frac {\sin \left (a+b x+\frac {\pi }{2}\right )^3}{(c+d x)^{3/2}}dx}{5 d^2}+\frac {8 b^2 \left (-\frac {2 b \left (\frac {2 \sin \left (a-\frac {b c}{d}\right ) \int \cos \left (\frac {b (c+d x)}{d}\right )d\sqrt {c+d x}}{d}+\cos \left (a-\frac {b c}{d}\right ) \int \frac {\sin \left (\frac {b c}{d}+b x\right )}{\sqrt {c+d x}}dx\right )}{d}-\frac {2 \cos (a+b x)}{d \sqrt {c+d x}}\right )}{5 d^2}+\frac {4 b \sin (a+b x) \cos ^2(a+b x)}{5 d^2 (c+d x)^{3/2}}-\frac {2 \cos ^3(a+b x)}{5 d (c+d x)^{5/2}}\)

\(\Big \downarrow \) 3786

\(\displaystyle -\frac {12 b^2 \int \frac {\sin \left (a+b x+\frac {\pi }{2}\right )^3}{(c+d x)^{3/2}}dx}{5 d^2}+\frac {8 b^2 \left (-\frac {2 b \left (\frac {2 \sin \left (a-\frac {b c}{d}\right ) \int \cos \left (\frac {b (c+d x)}{d}\right )d\sqrt {c+d x}}{d}+\frac {2 \cos \left (a-\frac {b c}{d}\right ) \int \sin \left (\frac {b (c+d x)}{d}\right )d\sqrt {c+d x}}{d}\right )}{d}-\frac {2 \cos (a+b x)}{d \sqrt {c+d x}}\right )}{5 d^2}+\frac {4 b \sin (a+b x) \cos ^2(a+b x)}{5 d^2 (c+d x)^{3/2}}-\frac {2 \cos ^3(a+b x)}{5 d (c+d x)^{5/2}}\)

\(\Big \downarrow \) 3794

\(\displaystyle -\frac {12 b^2 \left (\frac {6 b \int \left (-\frac {\sin (a+b x)}{4 \sqrt {c+d x}}-\frac {\sin (3 a+3 b x)}{4 \sqrt {c+d x}}\right )dx}{d}-\frac {2 \cos ^3(a+b x)}{d \sqrt {c+d x}}\right )}{5 d^2}+\frac {8 b^2 \left (-\frac {2 b \left (\frac {2 \sin \left (a-\frac {b c}{d}\right ) \int \cos \left (\frac {b (c+d x)}{d}\right )d\sqrt {c+d x}}{d}+\frac {2 \cos \left (a-\frac {b c}{d}\right ) \int \sin \left (\frac {b (c+d x)}{d}\right )d\sqrt {c+d x}}{d}\right )}{d}-\frac {2 \cos (a+b x)}{d \sqrt {c+d x}}\right )}{5 d^2}+\frac {4 b \sin (a+b x) \cos ^2(a+b x)}{5 d^2 (c+d x)^{3/2}}-\frac {2 \cos ^3(a+b x)}{5 d (c+d x)^{5/2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {8 b^2 \left (-\frac {2 b \left (\frac {2 \sin \left (a-\frac {b c}{d}\right ) \int \cos \left (\frac {b (c+d x)}{d}\right )d\sqrt {c+d x}}{d}+\frac {2 \cos \left (a-\frac {b c}{d}\right ) \int \sin \left (\frac {b (c+d x)}{d}\right )d\sqrt {c+d x}}{d}\right )}{d}-\frac {2 \cos (a+b x)}{d \sqrt {c+d x}}\right )}{5 d^2}-\frac {12 b^2 \left (\frac {6 b \left (-\frac {\sqrt {\frac {\pi }{6}} \sin \left (3 a-\frac {3 b c}{d}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {b} \sqrt {\frac {6}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}-\frac {\sqrt {\frac {\pi }{2}} \sin \left (a-\frac {b c}{d}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}-\frac {\sqrt {\frac {\pi }{2}} \cos \left (a-\frac {b c}{d}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}-\frac {\sqrt {\frac {\pi }{6}} \cos \left (3 a-\frac {3 b c}{d}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {b} \sqrt {\frac {6}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}\right )}{d}-\frac {2 \cos ^3(a+b x)}{d \sqrt {c+d x}}\right )}{5 d^2}+\frac {4 b \sin (a+b x) \cos ^2(a+b x)}{5 d^2 (c+d x)^{3/2}}-\frac {2 \cos ^3(a+b x)}{5 d (c+d x)^{5/2}}\)

\(\Big \downarrow \) 3832

\(\displaystyle \frac {8 b^2 \left (-\frac {2 b \left (\frac {2 \sin \left (a-\frac {b c}{d}\right ) \int \cos \left (\frac {b (c+d x)}{d}\right )d\sqrt {c+d x}}{d}+\frac {\sqrt {2 \pi } \cos \left (a-\frac {b c}{d}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{\sqrt {b} \sqrt {d}}\right )}{d}-\frac {2 \cos (a+b x)}{d \sqrt {c+d x}}\right )}{5 d^2}-\frac {12 b^2 \left (\frac {6 b \left (-\frac {\sqrt {\frac {\pi }{6}} \sin \left (3 a-\frac {3 b c}{d}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {b} \sqrt {\frac {6}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}-\frac {\sqrt {\frac {\pi }{2}} \sin \left (a-\frac {b c}{d}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}-\frac {\sqrt {\frac {\pi }{2}} \cos \left (a-\frac {b c}{d}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}-\frac {\sqrt {\frac {\pi }{6}} \cos \left (3 a-\frac {3 b c}{d}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {b} \sqrt {\frac {6}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}\right )}{d}-\frac {2 \cos ^3(a+b x)}{d \sqrt {c+d x}}\right )}{5 d^2}+\frac {4 b \sin (a+b x) \cos ^2(a+b x)}{5 d^2 (c+d x)^{3/2}}-\frac {2 \cos ^3(a+b x)}{5 d (c+d x)^{5/2}}\)

\(\Big \downarrow \) 3833

\(\displaystyle -\frac {12 b^2 \left (\frac {6 b \left (-\frac {\sqrt {\frac {\pi }{6}} \sin \left (3 a-\frac {3 b c}{d}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {b} \sqrt {\frac {6}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}-\frac {\sqrt {\frac {\pi }{2}} \sin \left (a-\frac {b c}{d}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}-\frac {\sqrt {\frac {\pi }{2}} \cos \left (a-\frac {b c}{d}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}-\frac {\sqrt {\frac {\pi }{6}} \cos \left (3 a-\frac {3 b c}{d}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {b} \sqrt {\frac {6}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{2 \sqrt {b} \sqrt {d}}\right )}{d}-\frac {2 \cos ^3(a+b x)}{d \sqrt {c+d x}}\right )}{5 d^2}+\frac {8 b^2 \left (-\frac {2 b \left (\frac {\sqrt {2 \pi } \sin \left (a-\frac {b c}{d}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{\sqrt {b} \sqrt {d}}+\frac {\sqrt {2 \pi } \cos \left (a-\frac {b c}{d}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }} \sqrt {c+d x}}{\sqrt {d}}\right )}{\sqrt {b} \sqrt {d}}\right )}{d}-\frac {2 \cos (a+b x)}{d \sqrt {c+d x}}\right )}{5 d^2}+\frac {4 b \sin (a+b x) \cos ^2(a+b x)}{5 d^2 (c+d x)^{3/2}}-\frac {2 \cos ^3(a+b x)}{5 d (c+d x)^{5/2}}\)

Input:

Int[Cos[a + b*x]^3/(c + d*x)^(7/2),x]
 

Output:

(-2*Cos[a + b*x]^3)/(5*d*(c + d*x)^(5/2)) - (12*b^2*((-2*Cos[a + b*x]^3)/( 
d*Sqrt[c + d*x]) + (6*b*(-1/2*(Sqrt[Pi/2]*Cos[a - (b*c)/d]*FresnelS[(Sqrt[ 
b]*Sqrt[2/Pi]*Sqrt[c + d*x])/Sqrt[d]])/(Sqrt[b]*Sqrt[d]) - (Sqrt[Pi/6]*Cos 
[3*a - (3*b*c)/d]*FresnelS[(Sqrt[b]*Sqrt[6/Pi]*Sqrt[c + d*x])/Sqrt[d]])/(2 
*Sqrt[b]*Sqrt[d]) - (Sqrt[Pi/6]*FresnelC[(Sqrt[b]*Sqrt[6/Pi]*Sqrt[c + d*x] 
)/Sqrt[d]]*Sin[3*a - (3*b*c)/d])/(2*Sqrt[b]*Sqrt[d]) - (Sqrt[Pi/2]*Fresnel 
C[(Sqrt[b]*Sqrt[2/Pi]*Sqrt[c + d*x])/Sqrt[d]]*Sin[a - (b*c)/d])/(2*Sqrt[b] 
*Sqrt[d])))/d))/(5*d^2) + (8*b^2*((-2*Cos[a + b*x])/(d*Sqrt[c + d*x]) - (2 
*b*((Sqrt[2*Pi]*Cos[a - (b*c)/d]*FresnelS[(Sqrt[b]*Sqrt[2/Pi]*Sqrt[c + d*x 
])/Sqrt[d]])/(Sqrt[b]*Sqrt[d]) + (Sqrt[2*Pi]*FresnelC[(Sqrt[b]*Sqrt[2/Pi]* 
Sqrt[c + d*x])/Sqrt[d]]*Sin[a - (b*c)/d])/(Sqrt[b]*Sqrt[d])))/d))/(5*d^2) 
+ (4*b*Cos[a + b*x]^2*Sin[a + b*x])/(5*d^2*(c + d*x)^(3/2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3778
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(c 
 + d*x)^(m + 1)*(Sin[e + f*x]/(d*(m + 1))), x] - Simp[f/(d*(m + 1))   Int[( 
c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[m, - 
1]
 

rule 3785
Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> S 
imp[2/d   Subst[Int[Cos[f*(x^2/d)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, 
d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
 

rule 3786
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[2/d 
   Subst[Int[Sin[f*(x^2/d)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f 
}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
 

rule 3787
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Cos 
[(d*e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] + Simp[Sin[( 
d*e - c*f)/d]   Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c, d 
, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]
 

rule 3794
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Si 
mp[(c + d*x)^(m + 1)*(Sin[e + f*x]^n/(d*(m + 1))), x] - Simp[f*(n/(d*(m + 1 
)))   Int[ExpandTrigReduce[(c + d*x)^(m + 1), Cos[e + f*x]*Sin[e + f*x]^(n 
- 1), x], x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && GeQ[m, -2] & 
& LtQ[m, -1]
 

rule 3795
Int[((c_.) + (d_.)*(x_))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbo 
l] :> Simp[(c + d*x)^(m + 1)*((b*Sin[e + f*x])^n/(d*(m + 1))), x] + (-Simp[ 
b*f*n*(c + d*x)^(m + 2)*Cos[e + f*x]*((b*Sin[e + f*x])^(n - 1)/(d^2*(m + 1) 
*(m + 2))), x] + Simp[b^2*f^2*n*((n - 1)/(d^2*(m + 1)*(m + 2)))   Int[(c + 
d*x)^(m + 2)*(b*Sin[e + f*x])^(n - 2), x], x] - Simp[f^2*(n^2/(d^2*(m + 1)* 
(m + 2)))   Int[(c + d*x)^(m + 2)*(b*Sin[e + f*x])^n, x], x]) /; FreeQ[{b, 
c, d, e, f}, x] && GtQ[n, 1] && LtQ[m, -2]
 

rule 3832
Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[ 
d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
 

rule 3833
Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[ 
d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
 
Maple [A] (verified)

Time = 1.96 (sec) , antiderivative size = 450, normalized size of antiderivative = 1.26

method result size
derivativedivides \(\frac {-\frac {3 \cos \left (\frac {b \left (d x +c \right )}{d}+\frac {a d -b c}{d}\right )}{10 \left (d x +c \right )^{\frac {5}{2}}}-\frac {3 b \left (-\frac {\sin \left (\frac {b \left (d x +c \right )}{d}+\frac {a d -b c}{d}\right )}{3 \left (d x +c \right )^{\frac {3}{2}}}+\frac {2 b \left (-\frac {\cos \left (\frac {b \left (d x +c \right )}{d}+\frac {a d -b c}{d}\right )}{\sqrt {d x +c}}-\frac {b \sqrt {2}\, \sqrt {\pi }\, \left (\cos \left (\frac {a d -b c}{d}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )+\sin \left (\frac {a d -b c}{d}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )\right )}{d \sqrt {\frac {b}{d}}}\right )}{3 d}\right )}{5 d}-\frac {\cos \left (\frac {3 b \left (d x +c \right )}{d}+\frac {3 a d -3 b c}{d}\right )}{10 \left (d x +c \right )^{\frac {5}{2}}}-\frac {3 b \left (-\frac {\sin \left (\frac {3 b \left (d x +c \right )}{d}+\frac {3 a d -3 b c}{d}\right )}{3 \left (d x +c \right )^{\frac {3}{2}}}+\frac {2 b \left (-\frac {\cos \left (\frac {3 b \left (d x +c \right )}{d}+\frac {3 a d -3 b c}{d}\right )}{\sqrt {d x +c}}-\frac {b \sqrt {2}\, \sqrt {\pi }\, \sqrt {3}\, \left (\cos \left (\frac {3 a d -3 b c}{d}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {3}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )+\sin \left (\frac {3 a d -3 b c}{d}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {3}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )\right )}{d \sqrt {\frac {b}{d}}}\right )}{d}\right )}{5 d}}{d}\) \(450\)
default \(\frac {-\frac {3 \cos \left (\frac {b \left (d x +c \right )}{d}+\frac {a d -b c}{d}\right )}{10 \left (d x +c \right )^{\frac {5}{2}}}-\frac {3 b \left (-\frac {\sin \left (\frac {b \left (d x +c \right )}{d}+\frac {a d -b c}{d}\right )}{3 \left (d x +c \right )^{\frac {3}{2}}}+\frac {2 b \left (-\frac {\cos \left (\frac {b \left (d x +c \right )}{d}+\frac {a d -b c}{d}\right )}{\sqrt {d x +c}}-\frac {b \sqrt {2}\, \sqrt {\pi }\, \left (\cos \left (\frac {a d -b c}{d}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )+\sin \left (\frac {a d -b c}{d}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )\right )}{d \sqrt {\frac {b}{d}}}\right )}{3 d}\right )}{5 d}-\frac {\cos \left (\frac {3 b \left (d x +c \right )}{d}+\frac {3 a d -3 b c}{d}\right )}{10 \left (d x +c \right )^{\frac {5}{2}}}-\frac {3 b \left (-\frac {\sin \left (\frac {3 b \left (d x +c \right )}{d}+\frac {3 a d -3 b c}{d}\right )}{3 \left (d x +c \right )^{\frac {3}{2}}}+\frac {2 b \left (-\frac {\cos \left (\frac {3 b \left (d x +c \right )}{d}+\frac {3 a d -3 b c}{d}\right )}{\sqrt {d x +c}}-\frac {b \sqrt {2}\, \sqrt {\pi }\, \sqrt {3}\, \left (\cos \left (\frac {3 a d -3 b c}{d}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {3}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )+\sin \left (\frac {3 a d -3 b c}{d}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {3}\, b \sqrt {d x +c}}{\sqrt {\pi }\, \sqrt {\frac {b}{d}}\, d}\right )\right )}{d \sqrt {\frac {b}{d}}}\right )}{d}\right )}{5 d}}{d}\) \(450\)

Input:

int(cos(b*x+a)^3/(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

2/d*(-3/20/(d*x+c)^(5/2)*cos(b*(d*x+c)/d+(a*d-b*c)/d)-3/10*b/d*(-1/3/(d*x+ 
c)^(3/2)*sin(b*(d*x+c)/d+(a*d-b*c)/d)+2/3*b/d*(-1/(d*x+c)^(1/2)*cos(b*(d*x 
+c)/d+(a*d-b*c)/d)-b/d*2^(1/2)*Pi^(1/2)/(b/d)^(1/2)*(cos((a*d-b*c)/d)*Fres 
nelS(2^(1/2)/Pi^(1/2)/(b/d)^(1/2)*b*(d*x+c)^(1/2)/d)+sin((a*d-b*c)/d)*Fres 
nelC(2^(1/2)/Pi^(1/2)/(b/d)^(1/2)*b*(d*x+c)^(1/2)/d))))-1/20/(d*x+c)^(5/2) 
*cos(3*b*(d*x+c)/d+3*(a*d-b*c)/d)-3/10*b/d*(-1/3/(d*x+c)^(3/2)*sin(3*b*(d* 
x+c)/d+3*(a*d-b*c)/d)+2*b/d*(-1/(d*x+c)^(1/2)*cos(3*b*(d*x+c)/d+3*(a*d-b*c 
)/d)-b/d*2^(1/2)*Pi^(1/2)*3^(1/2)/(b/d)^(1/2)*(cos(3*(a*d-b*c)/d)*FresnelS 
(2^(1/2)/Pi^(1/2)*3^(1/2)/(b/d)^(1/2)*b*(d*x+c)^(1/2)/d)+sin(3*(a*d-b*c)/d 
)*FresnelC(2^(1/2)/Pi^(1/2)*3^(1/2)/(b/d)^(1/2)*b*(d*x+c)^(1/2)/d)))))
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 528, normalized size of antiderivative = 1.48 \[ \int \frac {\cos ^3(a+b x)}{(c+d x)^{7/2}} \, dx=\frac {2 \, {\left (3 \, \sqrt {6} {\left (\pi b^{2} d^{3} x^{3} + 3 \, \pi b^{2} c d^{2} x^{2} + 3 \, \pi b^{2} c^{2} d x + \pi b^{2} c^{3}\right )} \sqrt {\frac {b}{\pi d}} \cos \left (-\frac {3 \, {\left (b c - a d\right )}}{d}\right ) \operatorname {S}\left (\sqrt {6} \sqrt {d x + c} \sqrt {\frac {b}{\pi d}}\right ) + \sqrt {2} {\left (\pi b^{2} d^{3} x^{3} + 3 \, \pi b^{2} c d^{2} x^{2} + 3 \, \pi b^{2} c^{2} d x + \pi b^{2} c^{3}\right )} \sqrt {\frac {b}{\pi d}} \cos \left (-\frac {b c - a d}{d}\right ) \operatorname {S}\left (\sqrt {2} \sqrt {d x + c} \sqrt {\frac {b}{\pi d}}\right ) + \sqrt {2} {\left (\pi b^{2} d^{3} x^{3} + 3 \, \pi b^{2} c d^{2} x^{2} + 3 \, \pi b^{2} c^{2} d x + \pi b^{2} c^{3}\right )} \sqrt {\frac {b}{\pi d}} \operatorname {C}\left (\sqrt {2} \sqrt {d x + c} \sqrt {\frac {b}{\pi d}}\right ) \sin \left (-\frac {b c - a d}{d}\right ) + 3 \, \sqrt {6} {\left (\pi b^{2} d^{3} x^{3} + 3 \, \pi b^{2} c d^{2} x^{2} + 3 \, \pi b^{2} c^{2} d x + \pi b^{2} c^{3}\right )} \sqrt {\frac {b}{\pi d}} \operatorname {C}\left (\sqrt {6} \sqrt {d x + c} \sqrt {\frac {b}{\pi d}}\right ) \sin \left (-\frac {3 \, {\left (b c - a d\right )}}{d}\right ) + {\left ({\left (12 \, b^{2} d^{2} x^{2} + 24 \, b^{2} c d x + 12 \, b^{2} c^{2} - d^{2}\right )} \cos \left (b x + a\right )^{3} + 2 \, {\left (b d^{2} x + b c d\right )} \cos \left (b x + a\right )^{2} \sin \left (b x + a\right ) - 8 \, {\left (b^{2} d^{2} x^{2} + 2 \, b^{2} c d x + b^{2} c^{2}\right )} \cos \left (b x + a\right )\right )} \sqrt {d x + c}\right )}}{5 \, {\left (d^{6} x^{3} + 3 \, c d^{5} x^{2} + 3 \, c^{2} d^{4} x + c^{3} d^{3}\right )}} \] Input:

integrate(cos(b*x+a)^3/(d*x+c)^(7/2),x, algorithm="fricas")
 

Output:

2/5*(3*sqrt(6)*(pi*b^2*d^3*x^3 + 3*pi*b^2*c*d^2*x^2 + 3*pi*b^2*c^2*d*x + p 
i*b^2*c^3)*sqrt(b/(pi*d))*cos(-3*(b*c - a*d)/d)*fresnel_sin(sqrt(6)*sqrt(d 
*x + c)*sqrt(b/(pi*d))) + sqrt(2)*(pi*b^2*d^3*x^3 + 3*pi*b^2*c*d^2*x^2 + 3 
*pi*b^2*c^2*d*x + pi*b^2*c^3)*sqrt(b/(pi*d))*cos(-(b*c - a*d)/d)*fresnel_s 
in(sqrt(2)*sqrt(d*x + c)*sqrt(b/(pi*d))) + sqrt(2)*(pi*b^2*d^3*x^3 + 3*pi* 
b^2*c*d^2*x^2 + 3*pi*b^2*c^2*d*x + pi*b^2*c^3)*sqrt(b/(pi*d))*fresnel_cos( 
sqrt(2)*sqrt(d*x + c)*sqrt(b/(pi*d)))*sin(-(b*c - a*d)/d) + 3*sqrt(6)*(pi* 
b^2*d^3*x^3 + 3*pi*b^2*c*d^2*x^2 + 3*pi*b^2*c^2*d*x + pi*b^2*c^3)*sqrt(b/( 
pi*d))*fresnel_cos(sqrt(6)*sqrt(d*x + c)*sqrt(b/(pi*d)))*sin(-3*(b*c - a*d 
)/d) + ((12*b^2*d^2*x^2 + 24*b^2*c*d*x + 12*b^2*c^2 - d^2)*cos(b*x + a)^3 
+ 2*(b*d^2*x + b*c*d)*cos(b*x + a)^2*sin(b*x + a) - 8*(b^2*d^2*x^2 + 2*b^2 
*c*d*x + b^2*c^2)*cos(b*x + a))*sqrt(d*x + c))/(d^6*x^3 + 3*c*d^5*x^2 + 3* 
c^2*d^4*x + c^3*d^3)
 

Sympy [F]

\[ \int \frac {\cos ^3(a+b x)}{(c+d x)^{7/2}} \, dx=\int \frac {\cos ^{3}{\left (a + b x \right )}}{\left (c + d x\right )^{\frac {7}{2}}}\, dx \] Input:

integrate(cos(b*x+a)**3/(d*x+c)**(7/2),x)
 

Output:

Integral(cos(a + b*x)**3/(c + d*x)**(7/2), x)
 

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.28 (sec) , antiderivative size = 254, normalized size of antiderivative = 0.71 \[ \int \frac {\cos ^3(a+b x)}{(c+d x)^{7/2}} \, dx=-\frac {3 \, {\left (3 \, \sqrt {3} {\left ({\left (-\left (i + 1\right ) \, \sqrt {2} \Gamma \left (-\frac {5}{2}, \frac {3 i \, {\left (d x + c\right )} b}{d}\right ) + \left (i - 1\right ) \, \sqrt {2} \Gamma \left (-\frac {5}{2}, -\frac {3 i \, {\left (d x + c\right )} b}{d}\right )\right )} \cos \left (-\frac {3 \, {\left (b c - a d\right )}}{d}\right ) + {\left (\left (i - 1\right ) \, \sqrt {2} \Gamma \left (-\frac {5}{2}, \frac {3 i \, {\left (d x + c\right )} b}{d}\right ) - \left (i + 1\right ) \, \sqrt {2} \Gamma \left (-\frac {5}{2}, -\frac {3 i \, {\left (d x + c\right )} b}{d}\right )\right )} \sin \left (-\frac {3 \, {\left (b c - a d\right )}}{d}\right )\right )} \left (\frac {{\left (d x + c\right )} b}{d}\right )^{\frac {5}{2}} - {\left ({\left (\left (i + 1\right ) \, \sqrt {2} \Gamma \left (-\frac {5}{2}, \frac {i \, {\left (d x + c\right )} b}{d}\right ) - \left (i - 1\right ) \, \sqrt {2} \Gamma \left (-\frac {5}{2}, -\frac {i \, {\left (d x + c\right )} b}{d}\right )\right )} \cos \left (-\frac {b c - a d}{d}\right ) + {\left (-\left (i - 1\right ) \, \sqrt {2} \Gamma \left (-\frac {5}{2}, \frac {i \, {\left (d x + c\right )} b}{d}\right ) + \left (i + 1\right ) \, \sqrt {2} \Gamma \left (-\frac {5}{2}, -\frac {i \, {\left (d x + c\right )} b}{d}\right )\right )} \sin \left (-\frac {b c - a d}{d}\right )\right )} \left (\frac {{\left (d x + c\right )} b}{d}\right )^{\frac {5}{2}}\right )}}{16 \, {\left (d x + c\right )}^{\frac {5}{2}} d} \] Input:

integrate(cos(b*x+a)^3/(d*x+c)^(7/2),x, algorithm="maxima")
 

Output:

-3/16*(3*sqrt(3)*((-(I + 1)*sqrt(2)*gamma(-5/2, 3*I*(d*x + c)*b/d) + (I - 
1)*sqrt(2)*gamma(-5/2, -3*I*(d*x + c)*b/d))*cos(-3*(b*c - a*d)/d) + ((I - 
1)*sqrt(2)*gamma(-5/2, 3*I*(d*x + c)*b/d) - (I + 1)*sqrt(2)*gamma(-5/2, -3 
*I*(d*x + c)*b/d))*sin(-3*(b*c - a*d)/d))*((d*x + c)*b/d)^(5/2) - (((I + 1 
)*sqrt(2)*gamma(-5/2, I*(d*x + c)*b/d) - (I - 1)*sqrt(2)*gamma(-5/2, -I*(d 
*x + c)*b/d))*cos(-(b*c - a*d)/d) + (-(I - 1)*sqrt(2)*gamma(-5/2, I*(d*x + 
 c)*b/d) + (I + 1)*sqrt(2)*gamma(-5/2, -I*(d*x + c)*b/d))*sin(-(b*c - a*d) 
/d))*((d*x + c)*b/d)^(5/2))/((d*x + c)^(5/2)*d)
 

Giac [F]

\[ \int \frac {\cos ^3(a+b x)}{(c+d x)^{7/2}} \, dx=\int { \frac {\cos \left (b x + a\right )^{3}}{{\left (d x + c\right )}^{\frac {7}{2}}} \,d x } \] Input:

integrate(cos(b*x+a)^3/(d*x+c)^(7/2),x, algorithm="giac")
 

Output:

integrate(cos(b*x + a)^3/(d*x + c)^(7/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^3(a+b x)}{(c+d x)^{7/2}} \, dx=\int \frac {{\cos \left (a+b\,x\right )}^3}{{\left (c+d\,x\right )}^{7/2}} \,d x \] Input:

int(cos(a + b*x)^3/(c + d*x)^(7/2),x)
 

Output:

int(cos(a + b*x)^3/(c + d*x)^(7/2), x)
 

Reduce [F]

\[ \int \frac {\cos ^3(a+b x)}{(c+d x)^{7/2}} \, dx=\int \frac {\cos \left (b x +a \right )^{3}}{\sqrt {d x +c}\, c^{3}+3 \sqrt {d x +c}\, c^{2} d x +3 \sqrt {d x +c}\, c \,d^{2} x^{2}+\sqrt {d x +c}\, d^{3} x^{3}}d x \] Input:

int(cos(b*x+a)^3/(d*x+c)^(7/2),x)
 

Output:

int(cos(a + b*x)**3/(sqrt(c + d*x)*c**3 + 3*sqrt(c + d*x)*c**2*d*x + 3*sqr 
t(c + d*x)*c*d**2*x**2 + sqrt(c + d*x)*d**3*x**3),x)