\(\int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^4} \, dx\) [79]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 120 \[ \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^4} \, dx=\frac {\text {arctanh}(\sin (c+d x))}{a^4 d}-\frac {11 \sin (c+d x)}{21 a^4 d (1+\cos (c+d x))^2}-\frac {32 \sin (c+d x)}{21 a^4 d (1+\cos (c+d x))}-\frac {\sin (c+d x)}{7 d (a+a \cos (c+d x))^4}-\frac {2 \sin (c+d x)}{7 a d (a+a \cos (c+d x))^3} \] Output:

arctanh(sin(d*x+c))/a^4/d-11/21*sin(d*x+c)/a^4/d/(1+cos(d*x+c))^2-32/21*si 
n(d*x+c)/a^4/d/(1+cos(d*x+c))-1/7*sin(d*x+c)/d/(a+a*cos(d*x+c))^4-2/7*sin( 
d*x+c)/a/d/(a+a*cos(d*x+c))^3
 

Mathematica [A] (verified)

Time = 1.51 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.54 \[ \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^4} \, dx=\frac {-1344 \cos ^8\left (\frac {1}{2} (c+d x)\right ) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+\cos \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \left (-686 \sin \left (\frac {d x}{2}\right )+434 \sin \left (c+\frac {d x}{2}\right )-525 \sin \left (c+\frac {3 d x}{2}\right )+147 \sin \left (2 c+\frac {3 d x}{2}\right )-203 \sin \left (2 c+\frac {5 d x}{2}\right )+21 \sin \left (3 c+\frac {5 d x}{2}\right )-32 \sin \left (3 c+\frac {7 d x}{2}\right )\right )}{84 a^4 d (1+\cos (c+d x))^4} \] Input:

Integrate[Sec[c + d*x]/(a + a*Cos[c + d*x])^4,x]
 

Output:

(-1344*Cos[(c + d*x)/2]^8*(Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[ 
Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) + Cos[(c + d*x)/2]*Sec[c/2]*(-686*Si 
n[(d*x)/2] + 434*Sin[c + (d*x)/2] - 525*Sin[c + (3*d*x)/2] + 147*Sin[2*c + 
 (3*d*x)/2] - 203*Sin[2*c + (5*d*x)/2] + 21*Sin[3*c + (5*d*x)/2] - 32*Sin[ 
3*c + (7*d*x)/2]))/(84*a^4*d*(1 + Cos[c + d*x])^4)
 

Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.12, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.632, Rules used = {3042, 3245, 3042, 3457, 27, 3042, 3457, 3042, 3457, 27, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (c+d x)}{(a \cos (c+d x)+a)^4} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^4}dx\)

\(\Big \downarrow \) 3245

\(\displaystyle \frac {\int \frac {(7 a-3 a \cos (c+d x)) \sec (c+d x)}{(\cos (c+d x) a+a)^3}dx}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {7 a-3 a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3}dx}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int \frac {5 \left (7 a^2-4 a^2 \cos (c+d x)\right ) \sec (c+d x)}{(\cos (c+d x) a+a)^2}dx}{5 a^2}-\frac {2 a \sin (c+d x)}{d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {\left (7 a^2-4 a^2 \cos (c+d x)\right ) \sec (c+d x)}{(\cos (c+d x) a+a)^2}dx}{a^2}-\frac {2 a \sin (c+d x)}{d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {7 a^2-4 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{a^2}-\frac {2 a \sin (c+d x)}{d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\frac {\int \frac {\left (21 a^3-11 a^3 \cos (c+d x)\right ) \sec (c+d x)}{\cos (c+d x) a+a}dx}{3 a^2}-\frac {11 \sin (c+d x)}{3 d (\cos (c+d x)+1)^2}}{a^2}-\frac {2 a \sin (c+d x)}{d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\int \frac {21 a^3-11 a^3 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}-\frac {11 \sin (c+d x)}{3 d (\cos (c+d x)+1)^2}}{a^2}-\frac {2 a \sin (c+d x)}{d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\frac {\frac {\int 21 a^4 \sec (c+d x)dx}{a^2}-\frac {32 a^3 \sin (c+d x)}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {11 \sin (c+d x)}{3 d (\cos (c+d x)+1)^2}}{a^2}-\frac {2 a \sin (c+d x)}{d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {21 a^2 \int \sec (c+d x)dx-\frac {32 a^3 \sin (c+d x)}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {11 \sin (c+d x)}{3 d (\cos (c+d x)+1)^2}}{a^2}-\frac {2 a \sin (c+d x)}{d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {21 a^2 \int \csc \left (c+d x+\frac {\pi }{2}\right )dx-\frac {32 a^3 \sin (c+d x)}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {11 \sin (c+d x)}{3 d (\cos (c+d x)+1)^2}}{a^2}-\frac {2 a \sin (c+d x)}{d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {\frac {\frac {21 a^2 \text {arctanh}(\sin (c+d x))}{d}-\frac {32 a^3 \sin (c+d x)}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {11 \sin (c+d x)}{3 d (\cos (c+d x)+1)^2}}{a^2}-\frac {2 a \sin (c+d x)}{d (a \cos (c+d x)+a)^3}}{7 a^2}-\frac {\sin (c+d x)}{7 d (a \cos (c+d x)+a)^4}\)

Input:

Int[Sec[c + d*x]/(a + a*Cos[c + d*x])^4,x]
 

Output:

-1/7*Sin[c + d*x]/(d*(a + a*Cos[c + d*x])^4) + ((-2*a*Sin[c + d*x])/(d*(a 
+ a*Cos[c + d*x])^3) + ((-11*Sin[c + d*x])/(3*d*(1 + Cos[c + d*x])^2) + (( 
21*a^2*ArcTanh[Sin[c + d*x]])/d - (32*a^3*Sin[c + d*x])/(d*(a + a*Cos[c + 
d*x])))/(3*a^2))/a^2)/(7*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3245
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/( 
a*(2*m + 1)*(b*c - a*d))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + 
f*x])^n*Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ 
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (Intege 
rsQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 0.94 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.73

method result size
derivativedivides \(\frac {-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{7}-\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-\frac {11 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}-15 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-8 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+8 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d \,a^{4}}\) \(88\)
default \(\frac {-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{7}-\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-\frac {11 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}-15 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-8 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+8 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d \,a^{4}}\) \(88\)
parallelrisch \(\frac {-3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}-21 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-77 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}-315 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-168 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+168 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{168 a^{4} d}\) \(88\)
norman \(\frac {-\frac {15 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a d}-\frac {11 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{24 a d}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{8 a d}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{56 a d}}{a^{3}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{4} d}-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{4} d}\) \(120\)
risch \(-\frac {2 i \left (21 \,{\mathrm e}^{6 i \left (d x +c \right )}+147 \,{\mathrm e}^{5 i \left (d x +c \right )}+434 \,{\mathrm e}^{4 i \left (d x +c \right )}+686 \,{\mathrm e}^{3 i \left (d x +c \right )}+525 \,{\mathrm e}^{2 i \left (d x +c \right )}+203 \,{\mathrm e}^{i \left (d x +c \right )}+32\right )}{21 d \,a^{4} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{7}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{a^{4} d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{a^{4} d}\) \(133\)

Input:

int(sec(d*x+c)/(a+a*cos(d*x+c))^4,x,method=_RETURNVERBOSE)
 

Output:

1/8/d/a^4*(-1/7*tan(1/2*d*x+1/2*c)^7-tan(1/2*d*x+1/2*c)^5-11/3*tan(1/2*d*x 
+1/2*c)^3-15*tan(1/2*d*x+1/2*c)-8*ln(tan(1/2*d*x+1/2*c)-1)+8*ln(tan(1/2*d* 
x+1/2*c)+1))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.68 \[ \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^4} \, dx=\frac {21 \, {\left (\cos \left (d x + c\right )^{4} + 4 \, \cos \left (d x + c\right )^{3} + 6 \, \cos \left (d x + c\right )^{2} + 4 \, \cos \left (d x + c\right ) + 1\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 21 \, {\left (\cos \left (d x + c\right )^{4} + 4 \, \cos \left (d x + c\right )^{3} + 6 \, \cos \left (d x + c\right )^{2} + 4 \, \cos \left (d x + c\right ) + 1\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (32 \, \cos \left (d x + c\right )^{3} + 107 \, \cos \left (d x + c\right )^{2} + 124 \, \cos \left (d x + c\right ) + 52\right )} \sin \left (d x + c\right )}{42 \, {\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \] Input:

integrate(sec(d*x+c)/(a+a*cos(d*x+c))^4,x, algorithm="fricas")
 

Output:

1/42*(21*(cos(d*x + c)^4 + 4*cos(d*x + c)^3 + 6*cos(d*x + c)^2 + 4*cos(d*x 
 + c) + 1)*log(sin(d*x + c) + 1) - 21*(cos(d*x + c)^4 + 4*cos(d*x + c)^3 + 
 6*cos(d*x + c)^2 + 4*cos(d*x + c) + 1)*log(-sin(d*x + c) + 1) - 2*(32*cos 
(d*x + c)^3 + 107*cos(d*x + c)^2 + 124*cos(d*x + c) + 52)*sin(d*x + c))/(a 
^4*d*cos(d*x + c)^4 + 4*a^4*d*cos(d*x + c)^3 + 6*a^4*d*cos(d*x + c)^2 + 4* 
a^4*d*cos(d*x + c) + a^4*d)
 

Sympy [F]

\[ \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^4} \, dx=\frac {\int \frac {\sec {\left (c + d x \right )}}{\cos ^{4}{\left (c + d x \right )} + 4 \cos ^{3}{\left (c + d x \right )} + 6 \cos ^{2}{\left (c + d x \right )} + 4 \cos {\left (c + d x \right )} + 1}\, dx}{a^{4}} \] Input:

integrate(sec(d*x+c)/(a+a*cos(d*x+c))**4,x)
 

Output:

Integral(sec(c + d*x)/(cos(c + d*x)**4 + 4*cos(c + d*x)**3 + 6*cos(c + d*x 
)**2 + 4*cos(c + d*x) + 1), x)/a**4
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.16 \[ \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^4} \, dx=-\frac {\frac {\frac {315 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {77 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {3 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}}{a^{4}} - \frac {168 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{4}} + \frac {168 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{4}}}{168 \, d} \] Input:

integrate(sec(d*x+c)/(a+a*cos(d*x+c))^4,x, algorithm="maxima")
 

Output:

-1/168*((315*sin(d*x + c)/(cos(d*x + c) + 1) + 77*sin(d*x + c)^3/(cos(d*x 
+ c) + 1)^3 + 21*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + 3*sin(d*x + c)^7/(c 
os(d*x + c) + 1)^7)/a^4 - 168*log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a^4 
 + 168*log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a^4)/d
 

Giac [A] (verification not implemented)

Time = 0.36 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.92 \[ \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^4} \, dx=\frac {\frac {168 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{4}} - \frac {168 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{4}} - \frac {3 \, a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 21 \, a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 77 \, a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 315 \, a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{28}}}{168 \, d} \] Input:

integrate(sec(d*x+c)/(a+a*cos(d*x+c))^4,x, algorithm="giac")
 

Output:

1/168*(168*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^4 - 168*log(abs(tan(1/2*d* 
x + 1/2*c) - 1))/a^4 - (3*a^24*tan(1/2*d*x + 1/2*c)^7 + 21*a^24*tan(1/2*d* 
x + 1/2*c)^5 + 77*a^24*tan(1/2*d*x + 1/2*c)^3 + 315*a^24*tan(1/2*d*x + 1/2 
*c))/a^28)/d
 

Mupad [B] (verification not implemented)

Time = 40.73 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.69 \[ \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^4} \, dx=-\frac {\frac {11\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24\,a^4}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{8\,a^4}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{56\,a^4}-\frac {2\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^4}+\frac {15\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8\,a^4}}{d} \] Input:

int(1/(cos(c + d*x)*(a + a*cos(c + d*x))^4),x)
 

Output:

-((11*tan(c/2 + (d*x)/2)^3)/(24*a^4) + tan(c/2 + (d*x)/2)^5/(8*a^4) + tan( 
c/2 + (d*x)/2)^7/(56*a^4) - (2*atanh(tan(c/2 + (d*x)/2)))/a^4 + (15*tan(c/ 
2 + (d*x)/2))/(8*a^4))/d
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.72 \[ \int \frac {\sec (c+d x)}{(a+a \cos (c+d x))^4} \, dx=\frac {-168 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+168 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}-21 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-77 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}-315 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{168 a^{4} d} \] Input:

int(sec(d*x+c)/(a+a*cos(d*x+c))^4,x)
 

Output:

( - 168*log(tan((c + d*x)/2) - 1) + 168*log(tan((c + d*x)/2) + 1) - 3*tan( 
(c + d*x)/2)**7 - 21*tan((c + d*x)/2)**5 - 77*tan((c + d*x)/2)**3 - 315*ta 
n((c + d*x)/2))/(168*a**4*d)