\(\int (a+a \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx\) [118]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 106 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=\frac {19 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {9 a^3 \tan (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sqrt {a+a \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d} \] Output:

19/4*a^(5/2)*arctanh(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))/d+9/4*a^3* 
tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/2*a^2*(a+a*cos(d*x+c))^(1/2)*sec(d*x 
+c)*tan(d*x+c)/d
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 7.36 (sec) , antiderivative size = 267, normalized size of antiderivative = 2.52 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=-\frac {a^2 \sqrt {a (1+\cos (c+d x))} \sec ^5\left (\frac {1}{2} (c+d x)\right ) \left (19 \sqrt {2} \log \left (i-\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )+19 \sqrt {2} \cos (2 (c+d x)) \left (\log \left (i-\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )-\log \left (i+\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )\right )-19 \sqrt {2} \log \left (i+\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )+28 \sin \left (\frac {1}{2} (c+d x)\right )-44 \sin \left (\frac {3}{2} (c+d x)\right )\right )}{32 d \left (-1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )^2} \] Input:

Integrate[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]^3,x]
 

Output:

-1/32*(a^2*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]^5*(19*Sqrt[2]*Log[I 
 - Sqrt[2]*E^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))] + 19*Sqrt[2]*Cos[2*(c 
+ d*x)]*(Log[I - Sqrt[2]*E^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))] - Log[I 
+ Sqrt[2]*E^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))]) - 19*Sqrt[2]*Log[I + S 
qrt[2]*E^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))] + 28*Sin[(c + d*x)/2] - 44 
*Sin[(3*(c + d*x))/2]))/(d*(-1 + Tan[(c + d*x)/2]^2)^2)
 

Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.02, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3042, 3241, 27, 3042, 3459, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) (a \cos (c+d x)+a)^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 3241

\(\displaystyle \frac {a^2 \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{2 d}-\frac {1}{2} a \int -\frac {1}{2} \sqrt {\cos (c+d x) a+a} (5 \cos (c+d x) a+9 a) \sec ^2(c+d x)dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{4} a \int \sqrt {\cos (c+d x) a+a} (5 \cos (c+d x) a+9 a) \sec ^2(c+d x)dx+\frac {a^2 \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (5 \sin \left (c+d x+\frac {\pi }{2}\right ) a+9 a\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a^2 \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {1}{4} a \left (\frac {19}{2} a \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx+\frac {9 a^2 \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} a \left (\frac {19}{2} a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {9 a^2 \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {1}{4} a \left (\frac {9 a^2 \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {19 a^2 \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {a^2 \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {a^2 \tan (c+d x) \sec (c+d x) \sqrt {a \cos (c+d x)+a}}{2 d}+\frac {1}{4} a \left (\frac {19 a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {9 a^2 \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )\)

Input:

Int[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]^3,x]
 

Output:

(a^2*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (a*((19*a 
^(3/2)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (9*a^ 
2*Tan[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]])))/4
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3241
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b 
*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a* 
d))), x] + Simp[b^2/(d*(n + 1)*(b*c + a*d))   Int[(a + b*Sin[e + f*x])^(m - 
 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b* 
c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
 && GtQ[m, 1] && LtQ[n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || 
 (IntegerQ[m] && EqQ[c, 0]))
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(550\) vs. \(2(90)=180\).

Time = 30.14 (sec) , antiderivative size = 551, normalized size of antiderivative = 5.20

method result size
default \(\frac {a^{\frac {3}{2}} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (76 a \left (\ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )+\ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (-44 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}-76 \ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a -76 \ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+26 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}+19 \ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a +19 \ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a \right )}{2 \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\right )^{2} \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}\right )^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(551\)

Input:

int((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^3,x,method=_RETURNVERBOSE)
 

Output:

1/2*a^(3/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(76*a*(ln(-4 
/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*s 
in(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))+ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2 
))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^ 
(1/2)+2*a)))*sin(1/2*d*x+1/2*c)^4+(-44*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1 
/2)*a^(1/2)-76*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x 
+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a-76*ln(4/(2* 
cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1 
/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a)*sin(1/2*d*x+1/2*c)^2+26*2^(1/2)*(a 
*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+19*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2 
))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^ 
(1/2)-2*a))*a+19*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d* 
x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a)/(2*cos(1/ 
2*d*x+1/2*c)-2^(1/2))^2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))^2/sin(1/2*d*x+1/2*c 
)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.60 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=\frac {19 \, {\left (a^{2} \cos \left (d x + c\right )^{3} + a^{2} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (11 \, a^{2} \cos \left (d x + c\right ) + 2 \, a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{16 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^3,x, algorithm="fricas")
 

Output:

1/16*(19*(a^2*cos(d*x + c)^3 + a^2*cos(d*x + c)^2)*sqrt(a)*log((a*cos(d*x 
+ c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x 
+ c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(11*a 
^2*cos(d*x + c) + 2*a^2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x 
 + c)^3 + d*cos(d*x + c)^2)
 

Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(5/2)*sec(d*x+c)**3,x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3667 vs. \(2 (90) = 180\).

Time = 2.88 (sec) , antiderivative size = 3667, normalized size of antiderivative = 34.59 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^3,x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

-1/16*(150*sqrt(2)*a^2*cos(7/2*d*x + 7/2*c)*sin(2*d*x + 2*c) + 154*sqrt(2) 
*a^2*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) - 28*sqrt(2)*a^2*sin(3/2*d*x + 
3/2*c) + 44*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c) - (3*sqrt(2)*a^2*sin(7/2*d*x 
+ 7/2*c) + 5*sqrt(2)*a^2*sin(5/2*d*x + 5/2*c) - 17*sqrt(2)*a^2*sin(3/2*d*x 
 + 3/2*c) - 55*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c) + 19*a^2*log(2*cos(1/2*d*x 
 + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 
2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 
+ 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*si 
n(1/2*d*x + 1/2*c) + 2) + 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2* 
d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 
1/2*c) + 2) - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) 
^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2)) 
*cos(4*d*x + 4*c)^2 + 4*(17*sqrt(2)*a^2*sin(3/2*d*x + 3/2*c) + 55*sqrt(2)* 
a^2*sin(1/2*d*x + 1/2*c) - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2 
*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 
 1/2*c) + 2) + 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c 
)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) 
 - 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt 
(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 19*a^2*lo 
g(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1...
 

Giac [A] (verification not implemented)

Time = 0.44 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.32 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=-\frac {\sqrt {2} {\left (19 \, \sqrt {2} a^{2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + \frac {4 \, {\left (22 \, a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 13 \, a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}\right )} \sqrt {a}}{16 \, d} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^3,x, algorithm="giac")
 

Output:

-1/16*sqrt(2)*(19*sqrt(2)*a^2*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c)) 
/abs(2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c)))*sgn(cos(1/2*d*x + 1/2*c)) + 4*(2 
2*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 13*a^2*sgn(cos(1/ 
2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c))/(2*sin(1/2*d*x + 1/2*c)^2 - 1)^2)*sq 
rt(a)/d
 

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=\int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^3} \,d x \] Input:

int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x)^3,x)
 

Output:

int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x)^3, x)
 

Reduce [F]

\[ \int (a+a \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=\sqrt {a}\, a^{2} \left (2 \left (\int \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{3}d x \right )+\int \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{3}d x +\int \sqrt {\cos \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{3}d x \right ) \] Input:

int((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^3,x)
 

Output:

sqrt(a)*a**2*(2*int(sqrt(cos(c + d*x) + 1)*cos(c + d*x)*sec(c + d*x)**3,x) 
 + int(sqrt(cos(c + d*x) + 1)*cos(c + d*x)**2*sec(c + d*x)**3,x) + int(sqr 
t(cos(c + d*x) + 1)*sec(c + d*x)**3,x))