\(\int \frac {a+a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [150]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 57 \[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \] Output:

-2*a*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*a*InverseJacobiAM(1/2*d*x+1 
/2*c,2^(1/2))/d+2*a*sin(d*x+c)/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 5.32 (sec) , antiderivative size = 209, normalized size of antiderivative = 3.67 \[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a (1+\cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (4 \cos (d x) \csc (c)-\frac {(3 \cos (c-d x-\arctan (\tan (c)))+\cos (c+d x+\arctan (\tan (c)))) \csc (c) \sec (c)}{\sqrt {\sec ^2(c)}}-4 \cos (c+d x) \sqrt {\cos ^2(d x-\arctan (\cot (c)))} \sqrt {\csc ^2(c)} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec (d x-\arctan (\cot (c))) \sin (c)+2 \cos (c) \csc (d x+\arctan (\tan (c))) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sqrt {\sec ^2(c)} \sqrt {\sin ^2(d x+\arctan (\tan (c)))}\right )}{4 d \sqrt {\cos (c+d x)}} \] Input:

Integrate[(a + a*Cos[c + d*x])/Cos[c + d*x]^(3/2),x]
 

Output:

(a*(1 + Cos[c + d*x])*Sec[(c + d*x)/2]^2*(4*Cos[d*x]*Csc[c] - ((3*Cos[c - 
d*x - ArcTan[Tan[c]]] + Cos[c + d*x + ArcTan[Tan[c]]])*Csc[c]*Sec[c])/Sqrt 
[Sec[c]^2] - 4*Cos[c + d*x]*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c]^ 
2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d 
*x - ArcTan[Cot[c]]]*Sin[c] + 2*Cos[c]*Csc[d*x + ArcTan[Tan[c]]]*Hypergeom 
etricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sqrt[Sec[c]^2]* 
Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2]))/(4*d*Sqrt[Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.02, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a \cos (c+d x)+a}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a \sin \left (c+d x+\frac {\pi }{2}\right )+a}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3227

\(\displaystyle a \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx+a \int \frac {1}{\sqrt {\cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3116

\(\displaystyle a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+a \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\)

Input:

Int[(a + a*Cos[c + d*x])/Cos[c + d*x]^(3/2),x]
 

Output:

(2*a*EllipticF[(c + d*x)/2, 2])/d + a*((-2*EllipticE[(c + d*x)/2, 2])/d + 
(2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(147\) vs. \(2(58)=116\).

Time = 2.02 (sec) , antiderivative size = 148, normalized size of antiderivative = 2.60

method result size
default \(\frac {2 a \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(148\)
parts \(-\frac {2 a \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {2 a \,\operatorname {InverseJacobiAM}\left (\frac {d x}{2}+\frac {c}{2}, \sqrt {2}\right )}{d}\) \(202\)

Input:

int((a+a*cos(d*x+c))/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2*a*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2 
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-( 
sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos 
(1/2*d*x+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1 
/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.08 (sec) , antiderivative size = 156, normalized size of antiderivative = 2.74 \[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {-i \, \sqrt {2} a \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} a \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} a \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} a \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{d \cos \left (d x + c\right )} \] Input:

integrate((a+a*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="fricas")
 

Output:

(-I*sqrt(2)*a*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin 
(d*x + c)) + I*sqrt(2)*a*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + 
 c) - I*sin(d*x + c)) - I*sqrt(2)*a*cos(d*x + c)*weierstrassZeta(-4, 0, we 
ierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + I*sqrt(2)*a*cos 
(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - 
 I*sin(d*x + c))) + 2*a*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c))
 

Sympy [F]

\[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=a \left (\int \frac {1}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {1}{\sqrt {\cos {\left (c + d x \right )}}}\, dx\right ) \] Input:

integrate((a+a*cos(d*x+c))/cos(d*x+c)**(3/2),x)
 

Output:

a*(Integral(cos(c + d*x)**(-3/2), x) + Integral(1/sqrt(cos(c + d*x)), x))
 

Maxima [F]

\[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="maxima")
 

Output:

integrate((a*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)
 

Giac [F]

\[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

integrate((a*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)
 

Mupad [B] (verification not implemented)

Time = 41.25 (sec) , antiderivative size = 60, normalized size of antiderivative = 1.05 \[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int((a + a*cos(c + d*x))/cos(c + d*x)^(3/2),x)
 

Output:

(2*a*ellipticF(c/2 + (d*x)/2, 2))/d + (2*a*sin(c + d*x)*hypergeom([-1/4, 1 
/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=a \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x +\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) \] Input:

int((a+a*cos(d*x+c))/cos(d*x+c)^(3/2),x)
 

Output:

a*(int(sqrt(cos(c + d*x))/cos(c + d*x),x) + int(sqrt(cos(c + d*x))/cos(c + 
 d*x)**2,x))