\(\int \frac {(a+a \cos (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx\) [156]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 67 \[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx=\frac {4 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a^2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d} \] Output:

4*a^2*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+8/3*a^2*InverseJacobiAM(1/2* 
d*x+1/2*c,2^(1/2))/d+2/3*a^2*cos(d*x+c)^(1/2)*sin(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 5.88 (sec) , antiderivative size = 224, normalized size of antiderivative = 3.34 \[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx=\frac {a^2 (1+\cos (c+d x))^2 \sec ^4\left (\frac {1}{2} (c+d x)\right ) \left (\frac {3 (3 \cos (c-d x-\arctan (\tan (c)))+\cos (c+d x+\arctan (\tan (c)))) \csc (c) \sec (c)}{\sqrt {\sec ^2(c)}}-8 \cos (c+d x) \sqrt {\cos ^2(d x-\arctan (\cot (c)))} \sqrt {\csc ^2(c)} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec (d x-\arctan (\cot (c))) \sin (c)+2 \cos (c+d x) (-6 \cot (c)+\sin (c+d x))-6 \cos (c) \csc (d x+\arctan (\tan (c))) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sqrt {\sec ^2(c)} \sqrt {\sin ^2(d x+\arctan (\tan (c)))}\right )}{12 d \sqrt {\cos (c+d x)}} \] Input:

Integrate[(a + a*Cos[c + d*x])^2/Sqrt[Cos[c + d*x]],x]
 

Output:

(a^2*(1 + Cos[c + d*x])^2*Sec[(c + d*x)/2]^4*((3*(3*Cos[c - d*x - ArcTan[T 
an[c]]] + Cos[c + d*x + ArcTan[Tan[c]]])*Csc[c]*Sec[c])/Sqrt[Sec[c]^2] - 8 
*Cos[c + d*x]*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c]^2]*Hypergeomet 
ricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d*x - ArcTan[Co 
t[c]]]*Sin[c] + 2*Cos[c + d*x]*(-6*Cot[c] + Sin[c + d*x]) - 6*Cos[c]*Csc[d 
*x + ArcTan[Tan[c]]]*HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcT 
an[Tan[c]]]^2]*Sqrt[Sec[c]^2]*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2]))/(12*d*Sq 
rt[Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 67, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3042, 3236, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^2}{\sqrt {\cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3236

\(\displaystyle \int \left (a^2 \cos ^{\frac {3}{2}}(c+d x)+2 a^2 \sqrt {\cos (c+d x)}+\frac {a^2}{\sqrt {\cos (c+d x)}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {8 a^2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {4 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\)

Input:

Int[(a + a*Cos[c + d*x])^2/Sqrt[Cos[c + d*x]],x]
 

Output:

(4*a^2*EllipticE[(c + d*x)/2, 2])/d + (8*a^2*EllipticF[(c + d*x)/2, 2])/(3 
*d) + (2*a^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3236
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*( 
x_)])^(m_.), x_Symbol] :> Int[ExpandTrig[(a + b*sin[e + f*x])^m*(d*sin[e + 
f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IGt 
Q[m, 0] && RationalQ[n]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(227\) vs. \(2(64)=128\).

Time = 3.23 (sec) , antiderivative size = 228, normalized size of antiderivative = 3.40

method result size
default \(-\frac {4 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(228\)
parts \(\frac {2 a^{2} \operatorname {InverseJacobiAM}\left (\frac {d x}{2}+\frac {c}{2}, \sqrt {2}\right )}{d}-\frac {2 a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {4 a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(338\)

Input:

int((a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-4/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(2*sin(1/ 
2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+ 
2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF( 
cos(1/2*d*x+1/2*c),2^(1/2))-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+ 
1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1 
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2* 
c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 134, normalized size of antiderivative = 2.00 \[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 \, {\left (a^{2} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 2 i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )\right )}}{3 \, d} \] Input:

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="fricas")
 

Output:

2/3*(a^2*sqrt(cos(d*x + c))*sin(d*x + c) - 2*I*sqrt(2)*a^2*weierstrassPInv 
erse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 2*I*sqrt(2)*a^2*weierstrassPI 
nverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)*a^2*weierstrass 
Zeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3 
*I*sqrt(2)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
 c) - I*sin(d*x + c))))/d
 

Sympy [F]

\[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx=a^{2} \left (\int \frac {1}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int 2 \sqrt {\cos {\left (c + d x \right )}}\, dx + \int \cos ^{\frac {3}{2}}{\left (c + d x \right )}\, dx\right ) \] Input:

integrate((a+a*cos(d*x+c))**2/cos(d*x+c)**(1/2),x)
 

Output:

a**2*(Integral(1/sqrt(cos(c + d*x)), x) + Integral(2*sqrt(cos(c + d*x)), x 
) + Integral(cos(c + d*x)**(3/2), x))
 

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate((a*cos(d*x + c) + a)^2/sqrt(cos(d*x + c)), x)
 

Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="giac")
 

Output:

integrate((a*cos(d*x + c) + a)^2/sqrt(cos(d*x + c)), x)
 

Mupad [B] (verification not implemented)

Time = 40.87 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.88 \[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx=\frac {4\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {8\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3\,d}+\frac {2\,a^2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3\,d} \] Input:

int((a + a*cos(c + d*x))^2/cos(c + d*x)^(1/2),x)
 

Output:

(4*a^2*ellipticE(c/2 + (d*x)/2, 2))/d + (8*a^2*ellipticF(c/2 + (d*x)/2, 2) 
)/(3*d) + (2*a^2*cos(c + d*x)^(1/2)*sin(c + d*x))/(3*d)
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx=a^{2} \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x +2 \left (\int \sqrt {\cos \left (d x +c \right )}d x \right )+\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) \] Input:

int((a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x)
 

Output:

a**2*(int(sqrt(cos(c + d*x))/cos(c + d*x),x) + 2*int(sqrt(cos(c + d*x)),x) 
 + int(sqrt(cos(c + d*x))*cos(c + d*x),x))