\(\int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [170]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 119 \[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {56 a^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {32 a^4 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^4 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {8 a^4 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a^4 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d} \] Output:

56/5*a^4*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+32/3*a^4*InverseJacobiAM( 
1/2*d*x+1/2*c,2^(1/2))/d+2*a^4*sin(d*x+c)/d/cos(d*x+c)^(1/2)+8/3*a^4*cos(d 
*x+c)^(1/2)*sin(d*x+c)/d+2/5*a^4*cos(d*x+c)^(3/2)*sin(d*x+c)/d
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.51 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.32 \[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 a^4 \csc (c+d x) \left (-15 \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}+\cos (c+d x) \left (-\left ((20+3 \cos (c+d x)) \sin ^2(c+d x)\right )+80 \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}+33 \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}\right )\right )}{15 d \sqrt {\cos (c+d x)}} \] Input:

Integrate[(a + a*Cos[c + d*x])^4/Cos[c + d*x]^(3/2),x]
 

Output:

(-2*a^4*Csc[c + d*x]*(-15*Hypergeometric2F1[-1/4, 1/2, 3/4, Cos[c + d*x]^2 
]*Sqrt[Sin[c + d*x]^2] + Cos[c + d*x]*(-((20 + 3*Cos[c + d*x])*Sin[c + d*x 
]^2) + 80*Hypergeometric2F1[1/4, 1/2, 5/4, Cos[c + d*x]^2]*Sqrt[Sin[c + d* 
x]^2] + 33*Cos[c + d*x]*Hypergeometric2F1[1/2, 3/4, 7/4, Cos[c + d*x]^2]*S 
qrt[Sin[c + d*x]^2])))/(15*d*Sqrt[Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3042, 3236, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^4}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^4}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3236

\(\displaystyle \int \left (a^4 \cos ^{\frac {5}{2}}(c+d x)+4 a^4 \cos ^{\frac {3}{2}}(c+d x)+\frac {a^4}{\cos ^{\frac {3}{2}}(c+d x)}+6 a^4 \sqrt {\cos (c+d x)}+\frac {4 a^4}{\sqrt {\cos (c+d x)}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {32 a^4 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {56 a^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^4 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}+\frac {8 a^4 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a^4 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

Input:

Int[(a + a*Cos[c + d*x])^4/Cos[c + d*x]^(3/2),x]
 

Output:

(56*a^4*EllipticE[(c + d*x)/2, 2])/(5*d) + (32*a^4*EllipticF[(c + d*x)/2, 
2])/(3*d) + (2*a^4*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) + (8*a^4*Sqrt[Cos[ 
c + d*x]]*Sin[c + d*x])/(3*d) + (2*a^4*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5 
*d)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3236
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*( 
x_)])^(m_.), x_Symbol] :> Int[ExpandTrig[(a + b*sin[e + f*x])^m*(d*sin[e + 
f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IGt 
Q[m, 0] && RationalQ[n]
 
Maple [A] (verified)

Time = 17.35 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.63

method result size
default \(\frac {8 a^{4} \left (6 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-26 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+19 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-20 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+21 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{15 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(194\)
parts \(\text {Expression too large to display}\) \(726\)

Input:

int((a+a*cos(d*x+c))^4/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

8/15*a^4*(6*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-26*sin(1/2*d*x+1/2*c)^ 
4*cos(1/2*d*x+1/2*c)+19*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-20*(sin(1/ 
2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d 
*x+1/2*c),2^(1/2))+21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2 
-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos 
(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.63 \[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (40 i \, \sqrt {2} a^{4} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 40 i \, \sqrt {2} a^{4} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 42 i \, \sqrt {2} a^{4} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 42 i \, \sqrt {2} a^{4} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (3 \, a^{4} \cos \left (d x + c\right )^{2} + 20 \, a^{4} \cos \left (d x + c\right ) + 15 \, a^{4}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{15 \, d \cos \left (d x + c\right )} \] Input:

integrate((a+a*cos(d*x+c))^4/cos(d*x+c)^(3/2),x, algorithm="fricas")
 

Output:

-2/15*(40*I*sqrt(2)*a^4*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + 
c) + I*sin(d*x + c)) - 40*I*sqrt(2)*a^4*cos(d*x + c)*weierstrassPInverse(- 
4, 0, cos(d*x + c) - I*sin(d*x + c)) - 42*I*sqrt(2)*a^4*cos(d*x + c)*weier 
strassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c) 
)) + 42*I*sqrt(2)*a^4*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInve 
rse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (3*a^4*cos(d*x + c)^2 + 20*a^ 
4*cos(d*x + c) + 15*a^4)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**4/cos(d*x+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{4}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^4/cos(d*x+c)^(3/2),x, algorithm="maxima")
 

Output:

integrate((a*cos(d*x + c) + a)^4/cos(d*x + c)^(3/2), x)
 

Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{4}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^4/cos(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

integrate((a*cos(d*x + c) + a)^4/cos(d*x + c)^(3/2), x)
 

Mupad [B] (verification not implemented)

Time = 40.98 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.25 \[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {12\,a^4\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {32\,a^4\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3\,d}+\frac {8\,a^4\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3\,d}+\frac {2\,a^4\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,a^4\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int((a + a*cos(c + d*x))^4/cos(c + d*x)^(3/2),x)
 

Output:

(12*a^4*ellipticE(c/2 + (d*x)/2, 2))/d + (32*a^4*ellipticF(c/2 + (d*x)/2, 
2))/(3*d) + (8*a^4*cos(c + d*x)^(1/2)*sin(c + d*x))/(3*d) + (2*a^4*sin(c + 
 d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*( 
sin(c + d*x)^2)^(1/2)) - (2*a^4*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom( 
[1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=a^{4} \left (4 \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right )+\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x +6 \left (\int \sqrt {\cos \left (d x +c \right )}d x \right )+4 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right )+\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) \] Input:

int((a+a*cos(d*x+c))^4/cos(d*x+c)^(3/2),x)
 

Output:

a**4*(4*int(sqrt(cos(c + d*x))/cos(c + d*x),x) + int(sqrt(cos(c + d*x))/co 
s(c + d*x)**2,x) + 6*int(sqrt(cos(c + d*x)),x) + 4*int(sqrt(cos(c + d*x))* 
cos(c + d*x),x) + int(sqrt(cos(c + d*x))*cos(c + d*x)**2,x))