\(\int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [172]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 121 \[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {56 a^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {32 a^4 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^4 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {8 a^4 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {66 a^4 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \] Output:

-56/5*a^4*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+32/3*a^4*InverseJacobiAM 
(1/2*d*x+1/2*c,2^(1/2))/d+2/5*a^4*sin(d*x+c)/d/cos(d*x+c)^(5/2)+8/3*a^4*si 
n(d*x+c)/d/cos(d*x+c)^(3/2)+66/5*a^4*sin(d*x+c)/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.12 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.40 \[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a^4 \csc (c+d x) \left (3 \operatorname {Hypergeometric2F1}\left (-\frac {5}{4},\frac {1}{2},-\frac {1}{4},\cos ^2(c+d x)\right )-5 \cos (c+d x) \left (-4 \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},\frac {1}{2},\frac {1}{4},\cos ^2(c+d x)\right )+\cos (c+d x) \left (-18 \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},\cos ^2(c+d x)\right )+12 \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\cos ^2(c+d x)\right )+\cos ^2(c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},\cos ^2(c+d x)\right )\right )\right )\right ) \sqrt {\sin ^2(c+d x)}}{15 d \cos ^{\frac {5}{2}}(c+d x)} \] Input:

Integrate[(a + a*Cos[c + d*x])^4/Cos[c + d*x]^(7/2),x]
 

Output:

(2*a^4*Csc[c + d*x]*(3*Hypergeometric2F1[-5/4, 1/2, -1/4, Cos[c + d*x]^2] 
- 5*Cos[c + d*x]*(-4*Hypergeometric2F1[-3/4, 1/2, 1/4, Cos[c + d*x]^2] + C 
os[c + d*x]*(-18*Hypergeometric2F1[-1/4, 1/2, 3/4, Cos[c + d*x]^2] + 12*Co 
s[c + d*x]*Hypergeometric2F1[1/4, 1/2, 5/4, Cos[c + d*x]^2] + Cos[c + d*x] 
^2*Hypergeometric2F1[1/2, 3/4, 7/4, Cos[c + d*x]^2])))*Sqrt[Sin[c + d*x]^2 
])/(15*d*Cos[c + d*x]^(5/2))
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3042, 3236, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^4}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^4}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3236

\(\displaystyle \int \left (\frac {6 a^4}{\cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^4}{\cos ^{\frac {5}{2}}(c+d x)}+\frac {a^4}{\cos ^{\frac {7}{2}}(c+d x)}+a^4 \sqrt {\cos (c+d x)}+\frac {4 a^4}{\sqrt {\cos (c+d x)}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {32 a^4 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}-\frac {56 a^4 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {8 a^4 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a^4 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {66 a^4 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}\)

Input:

Int[(a + a*Cos[c + d*x])^4/Cos[c + d*x]^(7/2),x]
 

Output:

(-56*a^4*EllipticE[(c + d*x)/2, 2])/(5*d) + (32*a^4*EllipticF[(c + d*x)/2, 
 2])/(3*d) + (2*a^4*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (8*a^4*Sin[c 
+ d*x])/(3*d*Cos[c + d*x]^(3/2)) + (66*a^4*Sin[c + d*x])/(5*d*Sqrt[Cos[c + 
 d*x]])
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3236
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*( 
x_)])^(m_.), x_Symbol] :> Int[ExpandTrig[(a + b*sin[e + f*x])^m*(d*sin[e + 
f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IGt 
Q[m, 0] && RationalQ[n]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(385\) vs. \(2(108)=216\).

Time = 15.95 (sec) , antiderivative size = 386, normalized size of antiderivative = 3.19

method result size
default \(-\frac {32 \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{4} \left (\frac {41 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{60 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {7 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{20 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{320 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{3}}-\frac {33 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{40 \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{24 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(386\)
parts \(\text {Expression too large to display}\) \(916\)

Input:

int((a+a*cos(d*x+c))^4/cos(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-32*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^4*(41/60*( 
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2* 
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1 
/2))-7/20*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/( 
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x 
+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-1/320*cos(1/2*d*x+ 
1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1 
/2*c)^2-1/2)^3-33/40*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*cos(1/2 
*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)-1/24*cos(1/2*d*x+1/2*c)*(-2*s 
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2) 
^2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.67 \[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (40 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 40 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 42 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 42 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (99 \, a^{4} \cos \left (d x + c\right )^{2} + 20 \, a^{4} \cos \left (d x + c\right ) + 3 \, a^{4}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{15 \, d \cos \left (d x + c\right )^{3}} \] Input:

integrate((a+a*cos(d*x+c))^4/cos(d*x+c)^(7/2),x, algorithm="fricas")
 

Output:

-2/15*(40*I*sqrt(2)*a^4*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x 
+ c) + I*sin(d*x + c)) - 40*I*sqrt(2)*a^4*cos(d*x + c)^3*weierstrassPInver 
se(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 42*I*sqrt(2)*a^4*cos(d*x + c)^3 
*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d* 
x + c))) - 42*I*sqrt(2)*a^4*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstr 
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (99*a^4*cos(d*x + c)^ 
2 + 20*a^4*cos(d*x + c) + 3*a^4)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d 
*x + c)^3)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**4/cos(d*x+c)**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{4}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^4/cos(d*x+c)^(7/2),x, algorithm="maxima")
 

Output:

integrate((a*cos(d*x + c) + a)^4/cos(d*x + c)^(7/2), x)
 

Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{4}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^4/cos(d*x+c)^(7/2),x, algorithm="giac")
 

Output:

integrate((a*cos(d*x + c) + a)^4/cos(d*x + c)^(7/2), x)
 

Mupad [B] (verification not implemented)

Time = 41.73 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.67 \[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2\,\left (a^4\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+4\,a^4\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{d}+\frac {2\,\left (\frac {34\,a^4\,\sin \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {a^4\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d}+\frac {8\,a^4\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {8\,a^4\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {7}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{15\,d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int((a + a*cos(c + d*x))^4/cos(c + d*x)^(7/2),x)
 

Output:

(2*(a^4*ellipticE(c/2 + (d*x)/2, 2) + 4*a^4*ellipticF(c/2 + (d*x)/2, 2)))/ 
d + (2*((34*a^4*sin(c + d*x))/(cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) 
+ (a^4*sin(c + d*x))/(cos(c + d*x)^(5/2)*(sin(c + d*x)^2)^(1/2)))*hypergeo 
m([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(5*d) + (8*a^4*sin(c + d*x)*hypergeom 
([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^ 
2)^(1/2)) - (8*a^4*sin(c + d*x)*hypergeom([-1/4, 1/2], 7/4, cos(c + d*x)^2 
))/(15*d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^4}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=a^{4} \left (4 \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right )+\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x +4 \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right )+6 \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right )+\int \sqrt {\cos \left (d x +c \right )}d x \right ) \] Input:

int((a+a*cos(d*x+c))^4/cos(d*x+c)^(7/2),x)
 

Output:

a**4*(4*int(sqrt(cos(c + d*x))/cos(c + d*x),x) + int(sqrt(cos(c + d*x))/co 
s(c + d*x)**4,x) + 4*int(sqrt(cos(c + d*x))/cos(c + d*x)**3,x) + 6*int(sqr 
t(cos(c + d*x))/cos(c + d*x)**2,x) + int(sqrt(cos(c + d*x)),x))