\(\int \frac {\cos ^{\frac {7}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx\) [174]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 128 \[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {21 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a d}-\frac {5 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}+\frac {7 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 a d}-\frac {\cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))} \] Output:

21/5*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-5/3*InverseJacobiAM(1/2*d*x 
+1/2*c,2^(1/2))/a/d-5/3*cos(d*x+c)^(1/2)*sin(d*x+c)/a/d+7/5*cos(d*x+c)^(3/ 
2)*sin(d*x+c)/a/d-cos(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.00 (sec) , antiderivative size = 315, normalized size of antiderivative = 2.46 \[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (\frac {2 i \sqrt {2} e^{-i (c+d x)} \left (63 \left (1+e^{2 i (c+d x)}\right )+63 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )+25 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{d \left (-1+e^{2 i c}\right ) \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}-\frac {2 \sqrt {\cos (c+d x)} \csc (c) \left (15+10 \cos (d x) \sin ^2(c)-6 \cos (c) \left (-8+\cos (2 d x) \sin ^2(c)\right )+30 \sec \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right )+5 \sin (2 c) \sin (d x)-3 \cos (2 c) \sin (c) \sin (2 d x)\right )}{d}\right )}{15 a (1+\cos (c+d x))} \] Input:

Integrate[Cos[c + d*x]^(7/2)/(a + a*Cos[c + d*x]),x]
 

Output:

(Cos[(c + d*x)/2]^2*(((2*I)*Sqrt[2]*(63*(1 + E^((2*I)*(c + d*x))) + 63*(-1 
 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 
 3/4, -E^((2*I)*(c + d*x))] + 25*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 
 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d* 
x))]))/(d*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)) 
)/E^(I*(c + d*x))]) - (2*Sqrt[Cos[c + d*x]]*Csc[c]*(15 + 10*Cos[d*x]*Sin[c 
]^2 - 6*Cos[c]*(-8 + Cos[2*d*x]*Sin[c]^2) + 30*Sec[(c + d*x)/2]*Sin[c/2]*S 
in[(d*x)/2] + 5*Sin[2*c]*Sin[d*x] - 3*Cos[2*c]*Sin[c]*Sin[2*d*x]))/d))/(15 
*a*(1 + Cos[c + d*x]))
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.03, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3042, 3246, 27, 3042, 3227, 3042, 3115, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{a \cos (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}{a \sin \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 3246

\(\displaystyle -\frac {\int \frac {1}{2} \cos ^{\frac {3}{2}}(c+d x) (5 a-7 a \cos (c+d x))dx}{a^2}-\frac {\sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \cos ^{\frac {3}{2}}(c+d x) (5 a-7 a \cos (c+d x))dx}{2 a^2}-\frac {\sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (5 a-7 a \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx}{2 a^2}-\frac {\sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3227

\(\displaystyle -\frac {5 a \int \cos ^{\frac {3}{2}}(c+d x)dx-7 a \int \cos ^{\frac {5}{2}}(c+d x)dx}{2 a^2}-\frac {\sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {5 a \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx-7 a \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx}{2 a^2}-\frac {\sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3115

\(\displaystyle -\frac {5 a \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-7 a \left (\frac {3}{5} \int \sqrt {\cos (c+d x)}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {\sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {5 a \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-7 a \left (\frac {3}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {\sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {5 a \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-7 a \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {\sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {5 a \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-7 a \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {\sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

Input:

Int[Cos[c + d*x]^(7/2)/(a + a*Cos[c + d*x]),x]
 

Output:

-((Cos[c + d*x]^(5/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))) - (5*a*((2*E 
llipticF[(c + d*x)/2, 2])/(3*d) + (2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d 
)) - 7*a*((6*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*Cos[c + d*x]^(3/2)*Sin[ 
c + d*x])/(5*d)))/(2*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3246
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-(b*c - a*d))*Cos[e + f*x]*((c + d*Sin[e + 
 f*x])^(n - 1)/(a*f*(a + b*Sin[e + f*x]))), x] - Simp[d/(a*b)   Int[(c + d* 
Sin[e + f*x])^(n - 2)*Simp[b*d*(n - 1) - a*c*n + (b*c*(n - 1) - a*d*n)*Sin[ 
e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] & 
& EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && (IntegerQ[2*n] || 
EqQ[c, 0])
 
Maple [A] (verified)

Time = 5.15 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.79

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (25 \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+63 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+48 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-56 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-30 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+23 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{15 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(229\)

Input:

int(cos(d*x+c)^(7/2)/(a+a*cos(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

-1/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d* 
x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(25 
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+63*EllipticE(cos(1/2*d*x+1/2*c),2^( 
1/2)))+48*sin(1/2*d*x+1/2*c)^8-56*sin(1/2*d*x+1/2*c)^6-30*sin(1/2*d*x+1/2* 
c)^4+23*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^ 
4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1 
)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.12 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.62 \[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {2 \, {\left (6 \, \cos \left (d x + c\right )^{2} - 4 \, \cos \left (d x + c\right ) - 25\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 25 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 25 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 63 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 63 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{30 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \] Input:

integrate(cos(d*x+c)^(7/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")
 

Output:

1/30*(2*(6*cos(d*x + c)^2 - 4*cos(d*x + c) - 25)*sqrt(cos(d*x + c))*sin(d* 
x + c) - 25*(-I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 
0, cos(d*x + c) + I*sin(d*x + c)) - 25*(I*sqrt(2)*cos(d*x + c) + I*sqrt(2) 
)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 63*(-I*sqrt( 
2)*cos(d*x + c) - I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4 
, 0, cos(d*x + c) + I*sin(d*x + c))) - 63*(I*sqrt(2)*cos(d*x + c) + I*sqrt 
(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*si 
n(d*x + c))))/(a*d*cos(d*x + c) + a*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(7/2)/(a+a*cos(d*x+c)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {7}{2}}}{a \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate(cos(d*x+c)^(7/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")
 

Output:

integrate(cos(d*x + c)^(7/2)/(a*cos(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {7}{2}}}{a \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate(cos(d*x+c)^(7/2)/(a+a*cos(d*x+c)),x, algorithm="giac")
 

Output:

integrate(cos(d*x + c)^(7/2)/(a*cos(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{7/2}}{a+a\,\cos \left (c+d\,x\right )} \,d x \] Input:

int(cos(c + d*x)^(7/2)/(a + a*cos(c + d*x)),x)
 

Output:

int(cos(c + d*x)^(7/2)/(a + a*cos(c + d*x)), x)
 

Reduce [F]

\[ \int \frac {\cos ^{\frac {7}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}}{\cos \left (d x +c \right )+1}d x}{a} \] Input:

int(cos(d*x+c)^(7/2)/(a+a*cos(d*x+c)),x)
 

Output:

int((sqrt(cos(c + d*x))*cos(c + d*x)**3)/(cos(c + d*x) + 1),x)/a