\(\int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx\) [181]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 160 \[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {56 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a^2 d}-\frac {5 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a^2 d}-\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d}+\frac {56 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a^2 d}-\frac {3 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {\cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \] Output:

56/5*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d-5*InverseJacobiAM(1/2*d*x 
+1/2*c,2^(1/2))/a^2/d-5*cos(d*x+c)^(1/2)*sin(d*x+c)/a^2/d+56/15*cos(d*x+c) 
^(3/2)*sin(d*x+c)/a^2/d-3*cos(d*x+c)^(5/2)*sin(d*x+c)/a^2/d/(1+cos(d*x+c)) 
-1/3*cos(d*x+c)^(7/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^2
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.50 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.92 \[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {\sqrt {\cos (c+d x)} \csc ^3(c+d x) \left (-240-1186 \cos (c+d x)+340 \cos (2 (c+d x))+207 \cos (3 (c+d x))-20 \cos (4 (c+d x))+3 \cos (5 (c+d x))+600 \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\cos ^2(c+d x)\right ) \sin ^2(c+d x)^{3/2}+1792 \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {5}{2},\frac {7}{4},\cos ^2(c+d x)\right ) \sin ^2(c+d x)^{3/2}\right )}{120 a^2 d} \] Input:

Integrate[Cos[c + d*x]^(9/2)/(a + a*Cos[c + d*x])^2,x]
 

Output:

(Sqrt[Cos[c + d*x]]*Csc[c + d*x]^3*(-240 - 1186*Cos[c + d*x] + 340*Cos[2*( 
c + d*x)] + 207*Cos[3*(c + d*x)] - 20*Cos[4*(c + d*x)] + 3*Cos[5*(c + d*x) 
] + 600*Hypergeometric2F1[1/4, 1/2, 5/4, Cos[c + d*x]^2]*(Sin[c + d*x]^2)^ 
(3/2) + 1792*Cos[c + d*x]*Hypergeometric2F1[3/4, 5/2, 7/4, Cos[c + d*x]^2] 
*(Sin[c + d*x]^2)^(3/2)))/(120*a^2*d)
 

Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.09, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.522, Rules used = {3042, 3244, 27, 3042, 3456, 3042, 3227, 3042, 3115, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a \cos (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3244

\(\displaystyle -\frac {\int \frac {\cos ^{\frac {5}{2}}(c+d x) (7 a-11 a \cos (c+d x))}{2 (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {\sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\cos ^{\frac {5}{2}}(c+d x) (7 a-11 a \cos (c+d x))}{\cos (c+d x) a+a}dx}{6 a^2}-\frac {\sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (7 a-11 a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{6 a^2}-\frac {\sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3456

\(\displaystyle -\frac {\frac {\int \cos ^{\frac {3}{2}}(c+d x) \left (45 a^2-56 a^2 \cos (c+d x)\right )dx}{a^2}+\frac {18 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (45 a^2-56 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx}{a^2}+\frac {18 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle -\frac {\frac {45 a^2 \int \cos ^{\frac {3}{2}}(c+d x)dx-56 a^2 \int \cos ^{\frac {5}{2}}(c+d x)dx}{a^2}+\frac {18 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {45 a^2 \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx-56 a^2 \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx}{a^2}+\frac {18 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3115

\(\displaystyle -\frac {\frac {45 a^2 \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-56 a^2 \left (\frac {3}{5} \int \sqrt {\cos (c+d x)}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{a^2}+\frac {18 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {45 a^2 \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-56 a^2 \left (\frac {3}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{a^2}+\frac {18 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {\frac {45 a^2 \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-56 a^2 \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{a^2}+\frac {18 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {\frac {45 a^2 \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-56 a^2 \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{a^2}+\frac {18 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

Input:

Int[Cos[c + d*x]^(9/2)/(a + a*Cos[c + d*x])^2,x]
 

Output:

-1/3*(Cos[c + d*x]^(7/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^2) - ((18*C 
os[c + d*x]^(5/2)*Sin[c + d*x])/(d*(1 + Cos[c + d*x])) + (45*a^2*((2*Ellip 
ticF[(c + d*x)/2, 2])/(3*d) + (2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d)) - 
 56*a^2*((6*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*Cos[c + d*x]^(3/2)*Sin[c 
 + d*x])/(5*d)))/a^2)/(6*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3244
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e 
+ f*x])^m*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Simp[1/(a*b* 
(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)* 
Simp[b*(c^2*(m + 1) + d^2*(n - 1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) 
 + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && 
 NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] 
&& GtQ[n, 1] && (IntegersQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 
Maple [A] (verified)

Time = 7.42 (sec) , antiderivative size = 283, normalized size of antiderivative = 1.77

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (96 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}-352 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-150 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}-336 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+266 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-135 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+5\right )}{30 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(283\)

Input:

int(cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

-1/30*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(96*cos(1/2* 
d*x+1/2*c)^10-352*cos(1/2*d*x+1/2*c)^8+120*cos(1/2*d*x+1/2*c)^6-150*(sin(1 
/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2 
*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3-336*(sin(1/2*d*x+1/2*c)^2)^(1/2) 
*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*cos(1/2*d*x+1/2*c)^3*EllipticE(cos(1/2* 
d*x+1/2*c),2^(1/2))+266*cos(1/2*d*x+1/2*c)^4-135*cos(1/2*d*x+1/2*c)^2+5)/a 
^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/ 
2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 288, normalized size of antiderivative = 1.80 \[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {2 \, {\left (6 \, \cos \left (d x + c\right )^{3} - 8 \, \cos \left (d x + c\right )^{2} - 94 \, \cos \left (d x + c\right ) - 75\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 75 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 75 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 168 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 168 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{30 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \] Input:

integrate(cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")
 

Output:

1/30*(2*(6*cos(d*x + c)^3 - 8*cos(d*x + c)^2 - 94*cos(d*x + c) - 75)*sqrt( 
cos(d*x + c))*sin(d*x + c) - 75*(-I*sqrt(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*c 
os(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d 
*x + c)) - 75*(I*sqrt(2)*cos(d*x + c)^2 + 2*I*sqrt(2)*cos(d*x + c) + I*sqr 
t(2))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 168*(-I* 
sqrt(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrass 
Zeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 1 
68*(I*sqrt(2)*cos(d*x + c)^2 + 2*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weier 
strassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c) 
)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(9/2)/(a+a*cos(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {9}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")
 

Output:

integrate(cos(d*x + c)^(9/2)/(a*cos(d*x + c) + a)^2, x)
 

Giac [F]

\[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {9}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")
 

Output:

integrate(cos(d*x + c)^(9/2)/(a*cos(d*x + c) + a)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{9/2}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int(cos(c + d*x)^(9/2)/(a + a*cos(c + d*x))^2,x)
 

Output:

int(cos(c + d*x)^(9/2)/(a + a*cos(c + d*x))^2, x)
 

Reduce [F]

\[ \int \frac {\cos ^{\frac {9}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{4}}{\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1}d x}{a^{2}} \] Input:

int(cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^2,x)
 

Output:

int((sqrt(cos(c + d*x))*cos(c + d*x)**4)/(cos(c + d*x)**2 + 2*cos(c + d*x) 
 + 1),x)/a**2