\(\int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx\) [186]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 109 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \] Output:

EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+2/3*InverseJacobiAM(1/2*d*x+1/ 
2*c,2^(1/2))/a^2/d-cos(d*x+c)^(1/2)*sin(d*x+c)/a^2/d/(1+cos(d*x+c))-1/3*co 
s(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^2
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.32 (sec) , antiderivative size = 304, normalized size of antiderivative = 2.79 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\frac {\cos ^4\left (\frac {1}{2} (c+d x)\right ) \left (\frac {4 i \sqrt {2} e^{-i (c+d x)} \left (3 \left (1+e^{2 i (c+d x)}\right )+3 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )-2 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{d \left (-1+e^{2 i c}\right ) \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}-\frac {\sqrt {\cos (c+d x)} \left (7 \cos \left (\frac {1}{2} (c-d x)\right )+2 \cos \left (\frac {1}{2} (3 c+d x)\right )+3 \cos \left (\frac {1}{2} (c+3 d x)\right )\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {1}{2} (c+d x)\right )}{2 d}\right )}{3 a^2 (1+\cos (c+d x))^2} \] Input:

Integrate[1/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2),x]
 

Output:

(Cos[(c + d*x)/2]^4*(((4*I)*Sqrt[2]*(3*(1 + E^((2*I)*(c + d*x))) + 3*(-1 + 
 E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3 
/4, -E^((2*I)*(c + d*x))] - 2*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + 
E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x)) 
]))/(d*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E 
^(I*(c + d*x))]) - (Sqrt[Cos[c + d*x]]*(7*Cos[(c - d*x)/2] + 2*Cos[(3*c + 
d*x)/2] + 3*Cos[(c + 3*d*x)/2])*Csc[c/2]*Sec[c/2]*Sec[(c + d*x)/2]^3)/(2*d 
)))/(3*a^2*(1 + Cos[c + d*x])^2)
 

Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.08, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3042, 3245, 27, 3042, 3457, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3245

\(\displaystyle \frac {\int \frac {5 a-a \cos (c+d x)}{2 \sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {5 a-a \cos (c+d x)}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{6 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {5 a-a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{6 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int \frac {3 \cos (c+d x) a^2+2 a^2}{\sqrt {\cos (c+d x)}}dx}{a^2}-\frac {6 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {3 \sin \left (c+d x+\frac {\pi }{2}\right ) a^2+2 a^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {6 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {2 a^2 \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 a^2 \int \sqrt {\cos (c+d x)}dx}{a^2}-\frac {6 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 a^2 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a^2 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}-\frac {6 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {2 a^2 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a^2}-\frac {6 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {4 a^2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a^2}-\frac {6 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\)

Input:

Int[1/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2),x]
 

Output:

-1/3*(Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^2) + (((6*a 
^2*EllipticE[(c + d*x)/2, 2])/d + (4*a^2*EllipticF[(c + d*x)/2, 2])/d)/a^2 
 - (6*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(1 + Cos[c + d*x])))/(6*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3245
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/( 
a*(2*m + 1)*(b*c - a*d))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + 
f*x])^n*Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ 
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (Intege 
rsQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(256\) vs. \(2(104)=208\).

Time = 1.23 (sec) , antiderivative size = 257, normalized size of antiderivative = 2.36

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (12 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-4 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+6 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+3 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(257\)

Input:

int(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*cos(1/2*d* 
x+1/2*c)^6-4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2 
)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+6*(sin(1/2*d* 
x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*cos(1/2*d*x+1/2*c)^3*E 
llipticE(cos(1/2*d*x+1/2*c),2^(1/2))-16*cos(1/2*d*x+1/2*c)^4+3*cos(1/2*d*x 
+1/2*c)^2+1)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x 
+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 268, normalized size of antiderivative = 2.46 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=-\frac {2 \, {\left (3 \, \cos \left (d x + c\right ) + 4\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 2 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 2 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \] Input:

integrate(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")
 

Output:

-1/6*(2*(3*cos(d*x + c) + 4)*sqrt(cos(d*x + c))*sin(d*x + c) + 2*(I*sqrt(2 
)*cos(d*x + c)^2 + 2*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInver 
se(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 2*(-I*sqrt(2)*cos(d*x + c)^2 - 
2*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + 
 c) - I*sin(d*x + c)) + 3*(-I*sqrt(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*cos(d*x 
 + c) - I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d 
*x + c) + I*sin(d*x + c))) + 3*(I*sqrt(2)*cos(d*x + c)^2 + 2*I*sqrt(2)*cos 
(d*x + c) + I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, c 
os(d*x + c) - I*sin(d*x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + 
c) + a^2*d)
 

Sympy [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\frac {\int \frac {1}{\cos ^{\frac {5}{2}}{\left (c + d x \right )} + 2 \cos ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\cos {\left (c + d x \right )}}}\, dx}{a^{2}} \] Input:

integrate(1/cos(d*x+c)**(1/2)/(a+a*cos(d*x+c))**2,x)
 

Output:

Integral(1/(cos(c + d*x)**(5/2) + 2*cos(c + d*x)**(3/2) + sqrt(cos(c + d*x 
))), x)/a**2
 

Maxima [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")
 

Output:

integrate(1/((a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c))), x)
 

Giac [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")
 

Output:

integrate(1/((a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c))), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\int \frac {1}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int(1/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^2),x)
                                                                                    
                                                                                    
 

Output:

int(1/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^2), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2} \, dx=\frac {\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}+2 \cos \left (d x +c \right )^{2}+\cos \left (d x +c \right )}d x}{a^{2}} \] Input:

int(1/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)**3 + 2*cos(c + d*x)**2 + cos(c + d*x) 
),x)/a**2