\(\int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx\) [188]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 162 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\frac {7 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {10 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {10 \sin (c+d x)}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {7 \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}-\frac {7 \sin (c+d x)}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x) (1+\cos (c+d x))}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \] Output:

7*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+10/3*InverseJacobiAM(1/2*d*x 
+1/2*c,2^(1/2))/a^2/d+10/3*sin(d*x+c)/a^2/d/cos(d*x+c)^(3/2)-7*sin(d*x+c)/ 
a^2/d/cos(d*x+c)^(1/2)-7/3*sin(d*x+c)/a^2/d/cos(d*x+c)^(3/2)/(1+cos(d*x+c) 
)-1/3*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.45 (sec) , antiderivative size = 364, normalized size of antiderivative = 2.25 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\frac {\cos ^4\left (\frac {1}{2} (c+d x)\right ) \left (\frac {4 i \sqrt {2} e^{-i (c+d x)} \left (21 \left (1+e^{2 i (c+d x)}\right )+21 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )-10 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{d \left (-1+e^{2 i c}\right ) \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}-\frac {\left (82 \cos \left (\frac {1}{2} (c-d x)\right )+65 \cos \left (\frac {1}{2} (3 c+d x)\right )+68 \cos \left (\frac {1}{2} (c+3 d x)\right )+37 \cos \left (\frac {1}{2} (5 c+3 d x)\right )+53 \cos \left (\frac {1}{2} (3 c+5 d x)\right )+10 \cos \left (\frac {1}{2} (7 c+5 d x)\right )+21 \cos \left (\frac {1}{2} (5 c+7 d x)\right )\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {1}{2} (c+d x)\right )}{8 d \cos ^{\frac {3}{2}}(c+d x)}\right )}{3 a^2 (1+\cos (c+d x))^2} \] Input:

Integrate[1/(Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])^2),x]
 

Output:

(Cos[(c + d*x)/2]^4*(((4*I)*Sqrt[2]*(21*(1 + E^((2*I)*(c + d*x))) + 21*(-1 
 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 
 3/4, -E^((2*I)*(c + d*x))] - 10*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 
 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d* 
x))]))/(d*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)) 
)/E^(I*(c + d*x))]) - ((82*Cos[(c - d*x)/2] + 65*Cos[(3*c + d*x)/2] + 68*C 
os[(c + 3*d*x)/2] + 37*Cos[(5*c + 3*d*x)/2] + 53*Cos[(3*c + 5*d*x)/2] + 10 
*Cos[(7*c + 5*d*x)/2] + 21*Cos[(5*c + 7*d*x)/2])*Csc[c/2]*Sec[c/2]*Sec[(c 
+ d*x)/2]^3)/(8*d*Cos[c + d*x]^(3/2))))/(3*a^2*(1 + Cos[c + d*x])^2)
 

Rubi [A] (verified)

Time = 0.82 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.06, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.565, Rules used = {3042, 3245, 27, 3042, 3457, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3245

\(\displaystyle \frac {\int \frac {9 a-5 a \cos (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {9 a-5 a \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{6 a^2}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {9 a-5 a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{6 a^2}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int \frac {3 \left (10 a^2-7 a^2 \cos (c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)}dx}{a^2}-\frac {14 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {3 \int \frac {10 a^2-7 a^2 \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)}dx}{a^2}-\frac {14 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 \int \frac {10 a^2-7 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx}{a^2}-\frac {14 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {3 \left (10 a^2 \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx-7 a^2 \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx\right )}{a^2}-\frac {14 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 \left (10 a^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx-7 a^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )}{a^2}-\frac {14 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {\frac {3 \left (10 a^2 \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-7 a^2 \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\right )}{a^2}-\frac {14 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 \left (10 a^2 \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-7 a^2 \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )}{a^2}-\frac {14 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {3 \left (10 a^2 \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-7 a^2 \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )}{a^2}-\frac {14 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {3 \left (10 a^2 \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-7 a^2 \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )}{a^2}-\frac {14 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

Input:

Int[1/(Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])^2),x]
 

Output:

-1/3*Sin[c + d*x]/(d*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^2) + ((-14*Si 
n[c + d*x])/(d*Cos[c + d*x]^(3/2)*(1 + Cos[c + d*x])) + (3*(10*a^2*((2*Ell 
ipticF[(c + d*x)/2, 2])/(3*d) + (2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))) 
 - 7*a^2*((-2*EllipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[ 
c + d*x]]))))/a^2)/(6*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3245
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/( 
a*(2*m + 1)*(b*c - a*d))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + 
f*x])^n*Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ 
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (Intege 
rsQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(412\) vs. \(2(149)=298\).

Time = 3.72 (sec) , antiderivative size = 413, normalized size of antiderivative = 2.55

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}+\frac {6 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {22 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {14 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {16 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{2 a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(413\)

Input:

int(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

-1/2*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a^2*(1/3*(- 
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)^3+6* 
(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)-22 
/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin( 
1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c), 
2^(1/2))+14*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2) 
/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d 
*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-2/3*cos(1/2*d*x+ 
1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1 
/2*c)^2-1/2)^2+16*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*cos(1/2*d* 
x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d 
*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 338, normalized size of antiderivative = 2.09 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=-\frac {2 \, {\left (21 \, \cos \left (d x + c\right )^{3} + 32 \, \cos \left (d x + c\right )^{2} + 8 \, \cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 10 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{4} + 2 i \, \sqrt {2} \cos \left (d x + c\right )^{3} + i \, \sqrt {2} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 10 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{4} - 2 i \, \sqrt {2} \cos \left (d x + c\right )^{3} - i \, \sqrt {2} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{4} - 2 i \, \sqrt {2} \cos \left (d x + c\right )^{3} - i \, \sqrt {2} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{4} + 2 i \, \sqrt {2} \cos \left (d x + c\right )^{3} + i \, \sqrt {2} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2}\right )}} \] Input:

integrate(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")
 

Output:

-1/6*(2*(21*cos(d*x + c)^3 + 32*cos(d*x + c)^2 + 8*cos(d*x + c) - 2)*sqrt( 
cos(d*x + c))*sin(d*x + c) + 10*(I*sqrt(2)*cos(d*x + c)^4 + 2*I*sqrt(2)*co 
s(d*x + c)^3 + I*sqrt(2)*cos(d*x + c)^2)*weierstrassPInverse(-4, 0, cos(d* 
x + c) + I*sin(d*x + c)) + 10*(-I*sqrt(2)*cos(d*x + c)^4 - 2*I*sqrt(2)*cos 
(d*x + c)^3 - I*sqrt(2)*cos(d*x + c)^2)*weierstrassPInverse(-4, 0, cos(d*x 
 + c) - I*sin(d*x + c)) + 21*(-I*sqrt(2)*cos(d*x + c)^4 - 2*I*sqrt(2)*cos( 
d*x + c)^3 - I*sqrt(2)*cos(d*x + c)^2)*weierstrassZeta(-4, 0, weierstrassP 
Inverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*(I*sqrt(2)*cos(d*x + c 
)^4 + 2*I*sqrt(2)*cos(d*x + c)^3 + I*sqrt(2)*cos(d*x + c)^2)*weierstrassZe 
ta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^2 
*d*cos(d*x + c)^4 + 2*a^2*d*cos(d*x + c)^3 + a^2*d*cos(d*x + c)^2)
 

Sympy [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\frac {\int \frac {1}{\cos ^{\frac {9}{2}}{\left (c + d x \right )} + 2 \cos ^{\frac {7}{2}}{\left (c + d x \right )} + \cos ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx}{a^{2}} \] Input:

integrate(1/cos(d*x+c)**(5/2)/(a+a*cos(d*x+c))**2,x)
 

Output:

Integral(1/(cos(c + d*x)**(9/2) + 2*cos(c + d*x)**(7/2) + cos(c + d*x)**(5 
/2)), x)/a**2
 

Maxima [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")
 

Output:

integrate(1/((a*cos(d*x + c) + a)^2*cos(d*x + c)^(5/2)), x)
 

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")
 

Output:

integrate(1/((a*cos(d*x + c) + a)^2*cos(d*x + c)^(5/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{5/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int(1/(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^2),x)
 

Output:

int(1/(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^2), x)
 

Reduce [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\frac {\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5}+2 \cos \left (d x +c \right )^{4}+\cos \left (d x +c \right )^{3}}d x}{a^{2}} \] Input:

int(1/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)**5 + 2*cos(c + d*x)**4 + cos(c + d*x) 
**3),x)/a**2