\(\int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx\) [193]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 155 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=-\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac {\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {4 \sqrt {\cos (c+d x)} \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )} \] Output:

-1/10*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d+1/6*InverseJacobiAM(1/2* 
d*x+1/2*c,2^(1/2))/a^3/d-1/5*cos(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*cos(d*x+c) 
)^3+4/15*cos(d*x+c)^(1/2)*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^2+1/10*cos(d*x+c 
)^(1/2)*sin(d*x+c)/d/(a^3+a^3*cos(d*x+c))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.74 (sec) , antiderivative size = 146, normalized size of antiderivative = 0.94 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=-\frac {\sqrt {\cos (c+d x)} \csc (c+d x) \left ((497-1160 \cos (c+d x)+812 \cos (2 (c+d x))-280 \cos (3 (c+d x))+35 \cos (4 (c+d x))) \csc ^4(c+d x)+280 \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}+320 \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {7}{2},\frac {7}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}\right )}{1680 a^3 d} \] Input:

Integrate[Cos[c + d*x]^(3/2)/(a + a*Cos[c + d*x])^3,x]
 

Output:

-1/1680*(Sqrt[Cos[c + d*x]]*Csc[c + d*x]*((497 - 1160*Cos[c + d*x] + 812*C 
os[2*(c + d*x)] - 280*Cos[3*(c + d*x)] + 35*Cos[4*(c + d*x)])*Csc[c + d*x] 
^4 + 280*Hypergeometric2F1[1/4, 1/2, 5/4, Cos[c + d*x]^2]*Sqrt[Sin[c + d*x 
]^2] + 320*Cos[c + d*x]*Hypergeometric2F1[3/4, 7/2, 7/4, Cos[c + d*x]^2]*S 
qrt[Sin[c + d*x]^2]))/(a^3*d)
 

Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.10, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.609, Rules used = {3042, 3244, 27, 3042, 3457, 25, 3042, 3457, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a \cos (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3244

\(\displaystyle -\frac {\int \frac {a-7 a \cos (c+d x)}{2 \sqrt {\cos (c+d x)} (\cos (c+d x) a+a)^2}dx}{5 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {a-7 a \cos (c+d x)}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)^2}dx}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {a-7 a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle -\frac {\frac {\int -\frac {4 \cos (c+d x) a^2+a^2}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {8 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {-\frac {\int \frac {4 \cos (c+d x) a^2+a^2}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {8 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\frac {\int \frac {4 \sin \left (c+d x+\frac {\pi }{2}\right ) a^2+a^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}-\frac {8 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle -\frac {-\frac {\frac {\int \frac {5 a^3-3 a^3 \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx}{a^2}+\frac {3 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {8 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {-\frac {\frac {\int \frac {5 a^3-3 a^3 \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx}{2 a^2}+\frac {3 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {8 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\frac {\frac {\int \frac {5 a^3-3 a^3 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}+\frac {3 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {8 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3227

\(\displaystyle -\frac {-\frac {\frac {5 a^3 \int \frac {1}{\sqrt {\cos (c+d x)}}dx-3 a^3 \int \sqrt {\cos (c+d x)}dx}{2 a^2}+\frac {3 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {8 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\frac {\frac {5 a^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-3 a^3 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}+\frac {3 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {8 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {-\frac {\frac {5 a^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {6 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}+\frac {3 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {8 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {-\frac {\frac {3 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}+\frac {\frac {10 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {6 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}}{3 a^2}-\frac {8 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

Input:

Int[Cos[c + d*x]^(3/2)/(a + a*Cos[c + d*x])^3,x]
 

Output:

-1/5*(Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^3) - ((-8*a 
*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2) - (((-6*a^3 
*EllipticE[(c + d*x)/2, 2])/d + (10*a^3*EllipticF[(c + d*x)/2, 2])/d)/(2*a 
^2) + (3*a^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])))/(3 
*a^2))/(10*a^2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3244
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e 
+ f*x])^m*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Simp[1/(a*b* 
(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)* 
Simp[b*(c^2*(m + 1) + d^2*(n - 1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) 
 + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && 
 NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] 
&& GtQ[n, 1] && (IntegersQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 
Maple [A] (verified)

Time = 4.37 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.74

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (12 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+10 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+6 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+17 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-3\right )}{60 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(270\)

Input:

int(cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x,method=_RETURNVERBOSE)
 

Output:

-1/60*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*cos(1/2* 
d*x+1/2*c)^8+10*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^( 
1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5+6*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*cos(1/2*d*x+1/2*c)^ 
5*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-2*cos(1/2*d*x+1/2*c)^6-24*cos(1/2* 
d*x+1/2*c)^4+17*cos(1/2*d*x+1/2*c)^2-3)/a^3/cos(1/2*d*x+1/2*c)^5/(-2*sin(1 
/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2* 
d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 344, normalized size of antiderivative = 2.22 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\frac {2 \, {\left (3 \, \cos \left (d x + c\right )^{2} + 14 \, \cos \left (d x + c\right ) + 5\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 3 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 3 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 3 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 3 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{60 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \] Input:

integrate(cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x, algorithm="fricas")
 

Output:

1/60*(2*(3*cos(d*x + c)^2 + 14*cos(d*x + c) + 5)*sqrt(cos(d*x + c))*sin(d* 
x + c) - 5*(I*sqrt(2)*cos(d*x + c)^3 + 3*I*sqrt(2)*cos(d*x + c)^2 + 3*I*sq 
rt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) + 
I*sin(d*x + c)) - 5*(-I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(2)*cos(d*x + c)^ 
2 - 3*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d 
*x + c) - I*sin(d*x + c)) - 3*(I*sqrt(2)*cos(d*x + c)^3 + 3*I*sqrt(2)*cos( 
d*x + c)^2 + 3*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassZeta(-4, 0, 
weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*(-I*sqrt(2) 
*cos(d*x + c)^3 - 3*I*sqrt(2)*cos(d*x + c)^2 - 3*I*sqrt(2)*cos(d*x + c) - 
I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) 
- I*sin(d*x + c))))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3 
*d*cos(d*x + c) + a^3*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**3,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x, algorithm="maxima")
 

Output:

integrate(cos(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^3, x)
 

Giac [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x, algorithm="giac")
 

Output:

integrate(cos(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^3, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{3/2}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3} \,d x \] Input:

int(cos(c + d*x)^(3/2)/(a + a*cos(c + d*x))^3,x)
 

Output:

int(cos(c + d*x)^(3/2)/(a + a*cos(c + d*x))^3, x)
 

Reduce [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\frac {\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1}d x}{a^{3}} \] Input:

int(cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x)
 

Output:

int((sqrt(cos(c + d*x))*cos(c + d*x))/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 
 + 3*cos(c + d*x) + 1),x)/a**3