\(\int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\) [212]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 161 \[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 a^2 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {26 a^2 \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {104 a^2 \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {208 a^2 \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \] Output:

2/7*a^2*sin(d*x+c)/d/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c))^(1/2)+26/35*a^2*sin 
(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2)+104/105*a^2*sin(d*x+c)/d 
/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2)+208/105*a^2*sin(d*x+c)/d/cos(d*x+ 
c)^(1/2)/(a+a*cos(d*x+c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.45 \[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 a \sqrt {a (1+\cos (c+d x))} (41+117 \cos (c+d x)+26 \cos (2 (c+d x))+26 \cos (3 (c+d x))) \tan \left (\frac {1}{2} (c+d x)\right )}{105 d \cos ^{\frac {7}{2}}(c+d x)} \] Input:

Integrate[(a + a*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(9/2),x]
 

Output:

(2*a*Sqrt[a*(1 + Cos[c + d*x])]*(41 + 117*Cos[c + d*x] + 26*Cos[2*(c + d*x 
)] + 26*Cos[3*(c + d*x)])*Tan[(c + d*x)/2])/(105*d*Cos[c + d*x]^(7/2))
 

Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 3241, 27, 3042, 3251, 3042, 3251, 3042, 3250}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 3241

\(\displaystyle \frac {2 a^2 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {2}{7} a \int -\frac {13 \sqrt {\cos (c+d x) a+a}}{2 \cos ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {13}{7} a \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {13}{7} a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+\frac {2 a^2 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {13}{7} a \left (\frac {4}{5} \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {13}{7} a \left (\frac {4}{5} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {13}{7} a \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {13}{7} a \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3250

\(\displaystyle \frac {2 a^2 \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {13}{7} a \left (\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {4}{5} \left (\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {4 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )\right )\)

Input:

Int[(a + a*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(9/2),x]
 

Output:

(2*a^2*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)*Sqrt[a + a*Cos[c + d*x]]) + ( 
13*a*((2*a*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) 
 + (4*((2*a*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]] 
) + (4*a*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]))) 
/5))/7
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3241
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b 
*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a* 
d))), x] + Simp[b^2/(d*(n + 1)*(b*c + a*d))   Int[(a + b*Sin[e + f*x])^(m - 
 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b* 
c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
 && GtQ[m, 1] && LtQ[n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || 
 (IntegerQ[m] && EqQ[c, 0]))
 

rule 3250
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2), x_Symbol] :> Simp[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sq 
rt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3251
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e 
+ f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] + Sim 
p[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2)))   Int[Sqrt[a + b*Sin[e 
+ f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]
 
Maple [A] (verified)

Time = 5.56 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.49

method result size
default \(\frac {2 \sin \left (d x +c \right ) \left (104 \cos \left (d x +c \right )^{3}+52 \cos \left (d x +c \right )^{2}+39 \cos \left (d x +c \right )+15\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \sqrt {2}}{105 d \cos \left (d x +c \right )^{\frac {7}{2}} \left (\cos \left (d x +c \right )+1\right )}\) \(79\)

Input:

int((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(9/2),x,method=_RETURNVERBOSE)
 

Output:

2/105/d*sin(d*x+c)*(104*cos(d*x+c)^3+52*cos(d*x+c)^2+39*cos(d*x+c)+15)*(a* 
cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(d*x+c)^(7/2)/(cos(d*x+c)+1)*a*2^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.53 \[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 \, {\left (104 \, a \cos \left (d x + c\right )^{3} + 52 \, a \cos \left (d x + c\right )^{2} + 39 \, a \cos \left (d x + c\right ) + 15 \, a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right )^{5} + d \cos \left (d x + c\right )^{4}\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(9/2),x, algorithm="fricas")
 

Output:

2/105*(104*a*cos(d*x + c)^3 + 52*a*cos(d*x + c)^2 + 39*a*cos(d*x + c) + 15 
*a)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + 
c)^5 + d*cos(d*x + c)^4)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(3/2)/cos(d*x+c)**(9/2),x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 263, normalized size of antiderivative = 1.63 \[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {4 \, {\left (\frac {105 \, \sqrt {2} a^{\frac {3}{2}} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {245 \, \sqrt {2} a^{\frac {3}{2}} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {273 \, \sqrt {2} a^{\frac {3}{2}} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {171 \, \sqrt {2} a^{\frac {3}{2}} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac {38 \, \sqrt {2} a^{\frac {3}{2}} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{3}}{105 \, d {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {9}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {9}{2}} {\left (\frac {3 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {3 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {\sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + 1\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(9/2),x, algorithm="maxima")
 

Output:

4/105*(105*sqrt(2)*a^(3/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 245*sqrt(2)*a 
^(3/2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 273*sqrt(2)*a^(3/2)*sin(d*x + 
 c)^5/(cos(d*x + c) + 1)^5 - 171*sqrt(2)*a^(3/2)*sin(d*x + c)^7/(cos(d*x + 
 c) + 1)^7 + 38*sqrt(2)*a^(3/2)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9)*(sin( 
d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^3/(d*(sin(d*x + c)/(cos(d*x + c) + 1) 
 + 1)^(9/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(3*sin(d*x + c)^2 
/(cos(d*x + c) + 1)^2 + 3*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + sin(d*x + 
c)^6/(cos(d*x + c) + 1)^6 + 1))
 

Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(9/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 47.98 (sec) , antiderivative size = 157, normalized size of antiderivative = 0.98 \[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {91\,a\,\sin \left (\frac {3\,c}{2}+\frac {3\,d\,x}{2}\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}-35\,a\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}+26\,a\,\sin \left (\frac {7\,c}{2}+\frac {7\,d\,x}{2}\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}}{\frac {315\,d\,\sqrt {\cos \left (c+d\,x\right )}\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8}+\frac {315\,d\,\sqrt {\cos \left (c+d\,x\right )}\,\cos \left (\frac {3\,c}{2}+\frac {3\,d\,x}{2}\right )}{8}+\frac {105\,d\,\sqrt {\cos \left (c+d\,x\right )}\,\cos \left (\frac {5\,c}{2}+\frac {5\,d\,x}{2}\right )}{8}+\frac {105\,d\,\sqrt {\cos \left (c+d\,x\right )}\,\cos \left (\frac {7\,c}{2}+\frac {7\,d\,x}{2}\right )}{8}} \] Input:

int((a + a*cos(c + d*x))^(3/2)/cos(c + d*x)^(9/2),x)
 

Output:

(91*a*sin((3*c)/2 + (3*d*x)/2)*(a + a*cos(c + d*x))^(1/2) - 35*a*sin(c/2 + 
 (d*x)/2)*(a + a*cos(c + d*x))^(1/2) + 26*a*sin((7*c)/2 + (7*d*x)/2)*(a + 
a*cos(c + d*x))^(1/2))/((315*d*cos(c + d*x)^(1/2)*cos(c/2 + (d*x)/2))/8 + 
(315*d*cos(c + d*x)^(1/2)*cos((3*c)/2 + (3*d*x)/2))/8 + (105*d*cos(c + d*x 
)^(1/2)*cos((5*c)/2 + (5*d*x)/2))/8 + (105*d*cos(c + d*x)^(1/2)*cos((7*c)/ 
2 + (7*d*x)/2))/8)
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\sqrt {a}\, a \left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5}}d x +\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x \right ) \] Input:

int((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(9/2),x)
 

Output:

sqrt(a)*a*(int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**5 
,x) + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**4,x))