\(\int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [216]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 114 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {5 a^{5/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}-\frac {a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \] Output:

5*a^(5/2)*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))/d-a^3*cos(d*x+ 
c)^(1/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2*a^2*(a+a*cos(d*x+c))^(1/2)* 
sin(d*x+c)/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 4.36 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.60 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {(a (1+\cos (c+d x)))^{5/2} \sec ^4\left (\frac {1}{2} (c+d x)\right ) \left (7 (89+28 \cos (c+d x)+3 \cos (2 (c+d x))) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{2},\frac {7}{2},2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right )+24 (3+\cos (c+d x)) \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {5}{2},\frac {9}{2},2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^2(c+d x)+6 \csc ^2\left (\frac {1}{2} (c+d x)\right ) \, _3F_2\left (\frac {3}{2},2,\frac {5}{2};1,\frac {9}{2};2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^4(c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )}{420 d} \] Input:

Integrate[(a + a*Cos[c + d*x])^(5/2)/Cos[c + d*x]^(3/2),x]
 

Output:

((a*(1 + Cos[c + d*x]))^(5/2)*Sec[(c + d*x)/2]^4*(7*(89 + 28*Cos[c + d*x] 
+ 3*Cos[2*(c + d*x)])*Hypergeometric2F1[1/2, 3/2, 7/2, 2*Sin[(c + d*x)/2]^ 
2] + 24*(3 + Cos[c + d*x])*Hypergeometric2F1[3/2, 5/2, 9/2, 2*Sin[(c + d*x 
)/2]^2]*Sin[c + d*x]^2 + 6*Csc[(c + d*x)/2]^2*HypergeometricPFQ[{3/2, 2, 5 
/2}, {1, 9/2}, 2*Sin[(c + d*x)/2]^2]*Sin[c + d*x]^4)*Tan[(c + d*x)/2])/(42 
0*d)
 

Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 3241, 27, 3042, 3460, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3241

\(\displaystyle \frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}-2 a \int -\frac {(3 a-a \cos (c+d x)) \sqrt {\cos (c+d x) a+a}}{2 \sqrt {\cos (c+d x)}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle a \int \frac {(3 a-a \cos (c+d x)) \sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \frac {\left (3 a-a \sin \left (c+d x+\frac {\pi }{2}\right )\right ) \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3460

\(\displaystyle a \left (\frac {5}{2} a \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {5}{2} a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3253

\(\displaystyle a \left (-\frac {5 a \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}+a \left (\frac {5 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )\)

Input:

Int[(a + a*Cos[c + d*x])^(5/2)/Cos[c + d*x]^(3/2),x]
 

Output:

(2*a^2*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) + a*( 
(5*a^(3/2)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d - (a 
^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3241
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b 
*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a* 
d))), x] + Simp[b^2/(d*(n + 1)*(b*c + a*d))   Int[(a + b*Sin[e + f*x])^(m - 
 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b* 
c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
 && GtQ[m, 1] && LtQ[n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || 
 (IntegerQ[m] && EqQ[c, 0]))
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 
Maple [A] (verified)

Time = 10.64 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.00

method result size
default \(\frac {\sqrt {a \left (\cos \left (d x +c \right )+1\right )}\, \left (\frac {\sin \left (2 d x +2 c \right )}{2}+2 \sin \left (d x +c \right )+5 \left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )\right ) a^{2}}{d \sqrt {\cos \left (d x +c \right )}\, \left (\cos \left (d x +c \right )+1\right )}\) \(114\)

Input:

int((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/d*(a*(cos(d*x+c)+1))^(1/2)*(1/2*sin(2*d*x+2*c)+2*sin(d*x+c)+5*(cos(d*x+c 
)+1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(cos( 
d*x+c)+1))^(1/2)))/cos(d*x+c)^(1/2)/(cos(d*x+c)+1)*a^2
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.28 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {{\left (a^{2} \cos \left (d x + c\right ) + 2 \, a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 5 \, {\left (a^{2} \cos \left (d x + c\right )^{2} + a^{2} \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )}\right )}{d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(3/2),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

((a^2*cos(d*x + c) + 2*a^2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*si 
n(d*x + c) + 5*(a^2*cos(d*x + c)^2 + a^2*cos(d*x + c))*sqrt(a)*arctan(sqrt 
(a*cos(d*x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + 
c)^2 + a*cos(d*x + c))))/(d*cos(d*x + c)^2 + d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(5/2)/cos(d*x+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 973 vs. \(2 (100) = 200\).

Time = 0.29 (sec) , antiderivative size = 973, normalized size of antiderivative = 8.54 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(3/2),x, algorithm="maxima")
 

Output:

1/4*(2*(a^2*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d 
*x + c) - (a^2*cos(d*x + c) - a^2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2 
*d*x + 2*c) + 1)))*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2* 
d*x + 2*c) + 1)*sqrt(a) + 5*(a^2*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x 
+ 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c) 
, cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2 
*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2* 
c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d 
*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x 
 + 2*c), cos(2*d*x + 2*c) + 1))) + 1) - a^2*arctan2(-(cos(2*d*x + 2*c)^2 + 
 sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2 
*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*ar 
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin 
(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arct 
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan 
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - a^2*arctan2((cos(2*d*x 
+ 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arct 
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2* 
d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2 
*c), cos(2*d*x + 2*c) + 1)) + 1) + a^2*arctan2((cos(2*d*x + 2*c)^2 + si...
 

Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^{3/2}} \,d x \] Input:

int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x)^(3/2),x)
 

Output:

int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x)^(3/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\sqrt {a}\, a^{2} \left (2 \left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right )+\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x +\int \sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}d x \right ) \] Input:

int((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(3/2),x)
 

Output:

sqrt(a)*a**2*(2*int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d* 
x),x) + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x) 
 + int(sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)),x))