\(\int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [218]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 121 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {22 a^3 \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {86 a^3 \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)} \] Output:

22/15*a^3*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2)+86/15*a^3*s 
in(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)+2/5*a^2*(a+a*cos(d*x+c 
))^(1/2)*sin(d*x+c)/d/cos(d*x+c)^(5/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.53 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {a^2 \sqrt {a (1+\cos (c+d x))} (49+28 \cos (c+d x)+43 \cos (2 (c+d x))) \tan \left (\frac {1}{2} (c+d x)\right )}{15 d \cos ^{\frac {5}{2}}(c+d x)} \] Input:

Integrate[(a + a*Cos[c + d*x])^(5/2)/Cos[c + d*x]^(7/2),x]
 

Output:

(a^2*Sqrt[a*(1 + Cos[c + d*x])]*(49 + 28*Cos[c + d*x] + 43*Cos[2*(c + d*x) 
])*Tan[(c + d*x)/2])/(15*d*Cos[c + d*x]^(5/2))
 

Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.05, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3042, 3241, 27, 3042, 3459, 3042, 3250}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^{5/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3241

\(\displaystyle \frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{5 d \cos ^{\frac {5}{2}}(c+d x)}-\frac {2}{5} a \int -\frac {\sqrt {\cos (c+d x) a+a} (7 \cos (c+d x) a+11 a)}{2 \cos ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} a \int \frac {\sqrt {\cos (c+d x) a+a} (7 \cos (c+d x) a+11 a)}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (7 \sin \left (c+d x+\frac {\pi }{2}\right ) a+11 a\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {1}{5} a \left (\frac {43}{3} a \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {22 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} a \left (\frac {43}{3} a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {22 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3250

\(\displaystyle \frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {1}{5} a \left (\frac {22 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {86 a^2 \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )\)

Input:

Int[(a + a*Cos[c + d*x])^(5/2)/Cos[c + d*x]^(7/2),x]
 

Output:

(2*a^2*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + ( 
a*((22*a^2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) 
 + (86*a^2*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]) 
))/5
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3241
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b 
*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a* 
d))), x] + Simp[b^2/(d*(n + 1)*(b*c + a*d))   Int[(a + b*Sin[e + f*x])^(m - 
 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b* 
c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
 && GtQ[m, 1] && LtQ[n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || 
 (IntegerQ[m] && EqQ[c, 0]))
 

rule 3250
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2), x_Symbol] :> Simp[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sq 
rt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 
Maple [A] (verified)

Time = 5.54 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.54

method result size
default \(\frac {2 \sin \left (d x +c \right ) \left (43 \cos \left (d x +c \right )^{2}+14 \cos \left (d x +c \right )+3\right ) \sqrt {a \left (\cos \left (d x +c \right )+1\right )}\, a^{2}}{15 d \cos \left (d x +c \right )^{\frac {5}{2}} \left (\cos \left (d x +c \right )+1\right )}\) \(65\)

Input:

int((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

2/15/d*sin(d*x+c)*(43*cos(d*x+c)^2+14*cos(d*x+c)+3)*(a*(cos(d*x+c)+1))^(1/ 
2)/cos(d*x+c)^(5/2)/(cos(d*x+c)+1)*a^2
 

Fricas [A] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.67 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \, {\left (43 \, a^{2} \cos \left (d x + c\right )^{2} + 14 \, a^{2} \cos \left (d x + c\right ) + 3 \, a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(7/2),x, algorithm="fricas")
 

Output:

2/15*(43*a^2*cos(d*x + c)^2 + 14*a^2*cos(d*x + c) + 3*a^2)*sqrt(a*cos(d*x 
+ c) + a)*sqrt(cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + c)^4 + d*cos(d*x + 
c)^3)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(5/2)/cos(d*x+c)**(7/2),x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.25 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {8 \, {\left (\frac {15 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {35 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {28 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {8 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{15 \, d {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}}} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(7/2),x, algorithm="maxima")
 

Output:

8/15*(15*sqrt(2)*a^(5/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 35*sqrt(2)*a^(5 
/2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 28*sqrt(2)*a^(5/2)*sin(d*x + c)^ 
5/(cos(d*x + c) + 1)^5 - 8*sqrt(2)*a^(5/2)*sin(d*x + c)^7/(cos(d*x + c) + 
1)^7)/(d*(sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(-sin(d*x + c)/(cos(d 
*x + c) + 1) + 1)^(7/2))
 

Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(7/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 41.43 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.12 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2\,a^2\,\sqrt {a\,\left (\cos \left (c+d\,x\right )+1\right )}\,\left (98\,\sin \left (c+d\,x\right )+56\,\sin \left (2\,c+2\,d\,x\right )+141\,\sin \left (3\,c+3\,d\,x\right )+28\,\sin \left (4\,c+4\,d\,x\right )+43\,\sin \left (5\,c+5\,d\,x\right )\right )}{15\,d\,\sqrt {\cos \left (c+d\,x\right )}\,\left (10\,\cos \left (c+d\,x\right )+8\,\cos \left (2\,c+2\,d\,x\right )+5\,\cos \left (3\,c+3\,d\,x\right )+2\,\cos \left (4\,c+4\,d\,x\right )+\cos \left (5\,c+5\,d\,x\right )+6\right )} \] Input:

int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x)^(7/2),x)
 

Output:

(2*a^2*(a*(cos(c + d*x) + 1))^(1/2)*(98*sin(c + d*x) + 56*sin(2*c + 2*d*x) 
 + 141*sin(3*c + 3*d*x) + 28*sin(4*c + 4*d*x) + 43*sin(5*c + 5*d*x)))/(15* 
d*cos(c + d*x)^(1/2)*(10*cos(c + d*x) + 8*cos(2*c + 2*d*x) + 5*cos(3*c + 3 
*d*x) + 2*cos(4*c + 4*d*x) + cos(5*c + 5*d*x) + 6))
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\sqrt {a}\, a^{2} \left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x +2 \left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right )+\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) \] Input:

int((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(7/2),x)
 

Output:

sqrt(a)*a**2*(int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x) 
**4,x) + 2*int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**3 
,x) + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x))