\(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx\) [242]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 137 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=-\frac {7 \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}}+\frac {5 \sin (c+d x)}{2 a d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \] Output:

-7/4*arctan(1/2*a^(1/2)*sin(d*x+c)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c 
))^(1/2))*2^(1/2)/a^(3/2)/d-1/2*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x 
+c))^(3/2)+5/2*sin(d*x+c)/a/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 7.20 (sec) , antiderivative size = 456, normalized size of antiderivative = 3.33 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\frac {2 \cos ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {4 \cos ^4\left (\frac {1}{2} (c+d x)\right ) \, _3F_2\left (2,2,\frac {5}{2};1,\frac {9}{2};\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-35+70 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}-\frac {1}{6} \csc ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^2 \sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \left (-3 \text {arctanh}\left (\sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}}\right ) \left (-25+91 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )-100 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )+34 \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )\right )+\sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \left (-75+298 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )-350 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )+124 \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )\right )\right )\right )}{d (a (1+\cos (c+d x)))^{3/2} \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^{3/2}} \] Input:

Integrate[1/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(3/2)),x]
 

Output:

(2*Cos[c/2 + (d*x)/2]^3*Sec[(c + d*x)/2]^2*Sin[c/2 + (d*x)/2]*((4*Cos[(c + 
 d*x)/2]^4*HypergeometricPFQ[{2, 2, 5/2}, {1, 9/2}, Sin[c/2 + (d*x)/2]^2/( 
-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^2)/(-35 + 70*Sin[c/2 + (d 
*x)/2]^2) - (Csc[c/2 + (d*x)/2]^6*(1 - 2*Sin[c/2 + (d*x)/2]^2)^2*Sqrt[Sin[ 
c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*(-3*ArcTanh[Sqrt[Sin[c/2 + 
 (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*(-25 + 91*Sin[c/2 + (d*x)/2]^2 
 - 100*Sin[c/2 + (d*x)/2]^4 + 34*Sin[c/2 + (d*x)/2]^6) + Sqrt[Sin[c/2 + (d 
*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*(-75 + 298*Sin[c/2 + (d*x)/2]^2 - 
350*Sin[c/2 + (d*x)/2]^4 + 124*Sin[c/2 + (d*x)/2]^6)))/6))/(d*(a*(1 + Cos[ 
c + d*x]))^(3/2)*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(3/2))
 

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.01, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 3245, 27, 3042, 3463, 27, 3042, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 3245

\(\displaystyle \frac {\int \frac {5 a-2 a \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {5 a-2 a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {5 a-2 a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {\frac {2 \int -\frac {7 a^2}{2 \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {10 a \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {10 a \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-7 a \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {10 a \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-7 a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3261

\(\displaystyle \frac {\frac {14 a^2 \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}+\frac {10 a \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {10 a \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {7 \sqrt {2} \sqrt {a} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {\sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}\)

Input:

Int[1/(Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^(3/2)),x]
 

Output:

-1/2*Sin[c + d*x]/(d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2)) + ((-7 
*Sqrt[2]*Sqrt[a]*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]] 
*Sqrt[a + a*Cos[c + d*x]])])/d + (10*a*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]] 
*Sqrt[a + a*Cos[c + d*x]]))/(4*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3245
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/( 
a*(2*m + 1)*(b*c - a*d))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + 
f*x])^n*Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ 
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (Intege 
rsQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3463
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
+ 1)/(f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*(n + 1)*(c^2 - d^2))   Int[(a 
 + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 
1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && Eq 
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m 
 + 1/2, 0])
 
Maple [A] (verified)

Time = 6.60 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.87

method result size
default \(\frac {\sqrt {2}\, \sqrt {a \left (\cos \left (d x +c \right )+1\right )}\, \left (\sin \left (d x +c \right ) \left (5 \cos \left (d x +c \right )+4\right ) \sqrt {2}+\frac {7 \left (3+\cos \left (2 d x +2 c \right )+4 \cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}{2}\right )}{4 d \sqrt {\cos \left (d x +c \right )}\, \left (\cos \left (d x +c \right )+1\right )^{2} a^{2}}\) \(119\)

Input:

int(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/4/d*2^(1/2)*(a*(cos(d*x+c)+1))^(1/2)*(sin(d*x+c)*(5*cos(d*x+c)+4)*2^(1/2 
)+7/2*(3+cos(2*d*x+2*c)+4*cos(d*x+c))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ar 
csin(cot(d*x+c)-csc(d*x+c)))/cos(d*x+c)^(1/2)/(cos(d*x+c)+1)^2/a^2
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.25 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=-\frac {7 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )}}\right ) - 2 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (5 \, \cos \left (d x + c\right ) + 4\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}} \] Input:

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

-1/4*(7*sqrt(2)*(cos(d*x + c)^3 + 2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a) 
*arctan(1/2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*si 
n(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d*x + c))) - 2*sqrt(a*cos(d*x + c) + 
a)*(5*cos(d*x + c) + 4)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + 
c)^3 + 2*a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x + c))
 

Sympy [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {1}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate(1/cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**(3/2),x)
 

Output:

Integral(1/((a*(cos(c + d*x) + 1))**(3/2)*cos(c + d*x)**(3/2)), x)
 

Maxima [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

integrate(1/((a*cos(d*x + c) + a)^(3/2)*cos(d*x + c)^(3/2)), x)
 

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

integrate(1/((a*cos(d*x + c) + a)^(3/2)*cos(d*x + c)^(3/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int(1/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(3/2)),x)
 

Output:

int(1/(cos(c + d*x)^(3/2)*(a + a*cos(c + d*x))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}+2 \cos \left (d x +c \right )^{3}+\cos \left (d x +c \right )^{2}}d x \right )}{a^{2}} \] Input:

int(1/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/(cos(c + d*x)**4 
+ 2*cos(c + d*x)**3 + cos(c + d*x)**2),x))/a**2