\(\int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx\) [245]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 174 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\frac {2 \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^{5/2} d}-\frac {43 \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {11 \sqrt {\cos (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}} \] Output:

2*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))/a^(5/2)/d-43/32*arctan 
(1/2*a^(1/2)*sin(d*x+c)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*2 
^(1/2)/a^(5/2)/d-1/4*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(5/2)- 
11/16*cos(d*x+c)^(1/2)*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^(3/2)
 

Mathematica [A] (warning: unable to verify)

Time = 0.87 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.10 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=-\frac {\left (44 \arcsin \left (\sqrt {1-\cos (c+d x)}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right )+172 \arcsin \left (\sqrt {\cos (c+d x)}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right )-86 \sqrt {2} \arctan \left (\frac {\sqrt {\cos (c+d x)}}{\sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right )}}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right )+15 \sqrt {1-\cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)+11 \sqrt {-((-1+\cos (c+d x)) \cos (c+d x))}\right ) \sin (c+d x)}{16 d \sqrt {1-\cos (c+d x)} (a (1+\cos (c+d x)))^{5/2}} \] Input:

Integrate[Cos[c + d*x]^(5/2)/(a + a*Cos[c + d*x])^(5/2),x]
 

Output:

-1/16*((44*ArcSin[Sqrt[1 - Cos[c + d*x]]]*Cos[(c + d*x)/2]^4 + 172*ArcSin[ 
Sqrt[Cos[c + d*x]]]*Cos[(c + d*x)/2]^4 - 86*Sqrt[2]*ArcTan[Sqrt[Cos[c + d* 
x]]/Sqrt[Sin[(c + d*x)/2]^2]]*Cos[(c + d*x)/2]^4 + 15*Sqrt[1 - Cos[c + d*x 
]]*Cos[c + d*x]^(3/2) + 11*Sqrt[-((-1 + Cos[c + d*x])*Cos[c + d*x])])*Sin[ 
c + d*x])/(d*Sqrt[1 - Cos[c + d*x]]*(a*(1 + Cos[c + d*x]))^(5/2))
 

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.07, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3042, 3244, 27, 3042, 3456, 27, 3042, 3461, 3042, 3253, 223, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a \cos (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 3244

\(\displaystyle -\frac {\int \frac {\sqrt {\cos (c+d x)} (3 a-8 a \cos (c+d x))}{2 (\cos (c+d x) a+a)^{3/2}}dx}{4 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\sqrt {\cos (c+d x)} (3 a-8 a \cos (c+d x))}{(\cos (c+d x) a+a)^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (3 a-8 a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3456

\(\displaystyle -\frac {\frac {\int \frac {11 a^2-32 a^2 \cos (c+d x)}{2 \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}+\frac {11 a \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\int \frac {11 a^2-32 a^2 \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{4 a^2}+\frac {11 a \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {11 a^2-32 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}+\frac {11 a \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3461

\(\displaystyle -\frac {\frac {43 a^2 \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx-32 a \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx}{4 a^2}+\frac {11 a \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {43 a^2 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-32 a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{4 a^2}+\frac {11 a \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3253

\(\displaystyle -\frac {\frac {43 a^2 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {64 a \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}}{4 a^2}+\frac {11 a \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 223

\(\displaystyle -\frac {\frac {43 a^2 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {64 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}+\frac {11 a \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3261

\(\displaystyle -\frac {\frac {-\frac {86 a^3 \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {64 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}+\frac {11 a \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {\frac {\frac {43 \sqrt {2} a^{3/2} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {64 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}+\frac {11 a \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}\)

Input:

Int[Cos[c + d*x]^(5/2)/(a + a*Cos[c + d*x])^(5/2),x]
 

Output:

-1/4*(Cos[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^(5/2)) - (( 
(-64*a^(3/2)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + 
(43*Sqrt[2]*a^(3/2)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d* 
x]]*Sqrt[a + a*Cos[c + d*x]])])/d)/(4*a^2) + (11*a*Sqrt[Cos[c + d*x]]*Sin[ 
c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2)))/(8*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3244
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e 
+ f*x])^m*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Simp[1/(a*b* 
(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)* 
Simp[b*(c^2*(m + 1) + d^2*(n - 1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) 
 + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && 
 NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] 
&& GtQ[n, 1] && (IntegersQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 

rule 3461
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Sim 
p[(A*b - a*B)/b   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]) 
, x], x] + Simp[B/b   Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]] 
, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [A] (verified)

Time = 3.74 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.21

method result size
default \(\frac {\left (\left (48+16 \cos \left (2 d x +2 c \right )+64 \cos \left (d x +c \right )\right ) \sqrt {2}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )+\sin \left (d x +c \right ) \left (-15 \cos \left (d x +c \right )-11\right ) \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+\left (43 \cos \left (d x +c \right )^{2}+86 \cos \left (d x +c \right )+43\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {2}\, \sqrt {a \left (\cos \left (d x +c \right )+1\right )}}{32 d \left (\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a^{3}}\) \(210\)

Input:

int(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/32/d*((48+16*cos(2*d*x+2*c)+64*cos(d*x+c))*2^(1/2)*arctan(tan(d*x+c)*(co 
s(d*x+c)/(cos(d*x+c)+1))^(1/2))+sin(d*x+c)*(-15*cos(d*x+c)-11)*2^(1/2)*(co 
s(d*x+c)/(cos(d*x+c)+1))^(1/2)+(43*cos(d*x+c)^2+86*cos(d*x+c)+43)*arcsin(c 
ot(d*x+c)-csc(d*x+c)))*cos(d*x+c)^(1/2)*2^(1/2)*(a*(cos(d*x+c)+1))^(1/2)/( 
cos(d*x+c)^3+3*cos(d*x+c)^2+3*cos(d*x+c)+1)/(cos(d*x+c)/(cos(d*x+c)+1))^(1 
/2)/a^3
                                                                                    
                                                                                    
 

Fricas [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 265, normalized size of antiderivative = 1.52 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=-\frac {43 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )}}\right ) + 2 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (15 \, \cos \left (d x + c\right ) + 11\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 64 \, {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )}\right )}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \] Input:

integrate(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

-1/32*(43*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1) 
*sqrt(a)*arctan(1/2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sqrt(cos(d*x 
+ c))*sin(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d*x + c))) + 2*sqrt(a*cos(d*x 
 + c) + a)*(15*cos(d*x + c) + 11)*sqrt(cos(d*x + c))*sin(d*x + c) - 64*(co 
s(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt( 
a*cos(d*x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c 
)^2 + a*cos(d*x + c))))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3 
*a^3*d*cos(d*x + c) + a^3*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(5/2)/(a+a*cos(d*x+c))**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

integrate(cos(d*x + c)^(5/2)/(a*cos(d*x + c) + a)^(5/2), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{5/2}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \] Input:

int(cos(c + d*x)^(5/2)/(a + a*cos(c + d*x))^(5/2),x)
 

Output:

int(cos(c + d*x)^(5/2)/(a + a*cos(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1}d x \right )}{a^{3}} \] Input:

int(cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(5/2),x)
 

Output:

(sqrt(a)*int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + d*x)**2)/( 
cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d*x) + 1),x))/a**3