\(\int \frac {1}{\sqrt {1-\cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)} \, dx\) [286]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [C] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 83 \[ \int \frac {1}{\sqrt {1-\cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sin (c+d x)}{\sqrt {2} \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d}+\frac {2 \sin (c+d x)}{d \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}} \] Output:

-2^(1/2)*arctanh(1/2*sin(d*x+c)*2^(1/2)/(1-cos(d*x+c))^(1/2)/cos(d*x+c)^(1 
/2))/d+2*sin(d*x+c)/d/(1-cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 0.61 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.83 \[ \int \frac {1}{\sqrt {1-\cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \left (-\frac {e^{-\frac {1}{2} i (c+d x)} \left (1+e^{2 i (c+d x)}\right ) \text {arctanh}\left (\frac {1+e^{i (c+d x)}}{\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}}\right )}{\sqrt {2}}+2 \sqrt {1+e^{2 i (c+d x)}} \cos \left (\frac {1}{2} (c+d x)\right )\right ) \sin \left (\frac {1}{2} (c+d x)\right )}{d \sqrt {1+e^{2 i (c+d x)}} \sqrt {-((-1+\cos (c+d x)) \cos (c+d x))}} \] Input:

Integrate[1/(Sqrt[1 - Cos[c + d*x]]*Cos[c + d*x]^(3/2)),x]
 

Output:

(2*(-(((1 + E^((2*I)*(c + d*x)))*ArcTanh[(1 + E^(I*(c + d*x)))/(Sqrt[2]*Sq 
rt[1 + E^((2*I)*(c + d*x))])])/(Sqrt[2]*E^((I/2)*(c + d*x)))) + 2*Sqrt[1 + 
 E^((2*I)*(c + d*x))]*Cos[(c + d*x)/2])*Sin[(c + d*x)/2])/(d*Sqrt[1 + E^(( 
2*I)*(c + d*x))]*Sqrt[-((-1 + Cos[c + d*x])*Cos[c + d*x])])
 

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 3258, 3042, 3261, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {1-\cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {1-\sin \left (c+d x+\frac {\pi }{2}\right )} \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3258

\(\displaystyle \int \frac {1}{\sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{d \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {1-\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{d \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3261

\(\displaystyle \frac {2 \sin (c+d x)}{d \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}-\frac {2 \int \frac {1}{2-\frac {\sin (c+d x) \tan (c+d x)}{1-\cos (c+d x)}}d\frac {\sin (c+d x)}{\sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 \sin (c+d x)}{d \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sin (c+d x)}{\sqrt {2} \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d}\)

Input:

Int[1/(Sqrt[1 - Cos[c + d*x]]*Cos[c + d*x]^(3/2)),x]
 

Output:

-((Sqrt[2]*ArcTanh[Sin[c + d*x]/(Sqrt[2]*Sqrt[1 - Cos[c + d*x]]*Sqrt[Cos[c 
 + d*x]])])/d) + (2*Sin[c + d*x])/(d*Sqrt[1 - Cos[c + d*x]]*Sqrt[Cos[c + d 
*x]])
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3258
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_. 
) + (f_.)*(x_)]], x_Symbol] :> Simp[(-d)*Cos[e + f*x]*((c + d*Sin[e + f*x]) 
^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] - Simp[1/(2* 
b*(n + 1)*(c^2 - d^2))   Int[(c + d*Sin[e + f*x])^(n + 1)*(Simp[a*d - 2*b*c 
*(n + 1) + b*d*(2*n + 3)*Sin[e + f*x], x]/Sqrt[a + b*Sin[e + f*x]]), x], x] 
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] 
&& NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 5.99 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.14

method result size
default \(\frac {4 \left (-\sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}}{2 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+\sqrt {2}\right ) \operatorname {csgn}\left (\sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{d \left (\cos \left (d x +c \right )+1\right ) \sqrt {\cos \left (d x +c \right )}}\) \(95\)

Input:

int(1/(1-cos(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

4/d*(-(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(1/2*2^(1/2)/(cos(d*x+c)/(c 
os(d*x+c)+1))^(1/2))+2^(1/2))*csgn(sin(1/2*d*x+1/2*c))*cos(1/2*d*x+1/2*c)^ 
3/(cos(d*x+c)+1)/cos(d*x+c)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.73 \[ \int \frac {1}{\sqrt {1-\cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {2} \cos \left (d x + c\right ) \log \left (-\frac {2 \, {\left (\sqrt {2} \cos \left (d x + c\right ) + \sqrt {2}\right )} \sqrt {-\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )} - {\left (3 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )}{{\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) + 4 \, {\left (\cos \left (d x + c\right ) + 1\right )} \sqrt {-\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )}}{2 \, d \cos \left (d x + c\right ) \sin \left (d x + c\right )} \] Input:

integrate(1/(1-cos(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x, algorithm="fricas")
 

Output:

1/2*(sqrt(2)*cos(d*x + c)*log(-(2*(sqrt(2)*cos(d*x + c) + sqrt(2))*sqrt(-c 
os(d*x + c) + 1)*sqrt(cos(d*x + c)) - (3*cos(d*x + c) + 1)*sin(d*x + c))/( 
(cos(d*x + c) - 1)*sin(d*x + c)))*sin(d*x + c) + 4*(cos(d*x + c) + 1)*sqrt 
(-cos(d*x + c) + 1)*sqrt(cos(d*x + c)))/(d*cos(d*x + c)*sin(d*x + c))
 

Sympy [F]

\[ \int \frac {1}{\sqrt {1-\cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {1}{\sqrt {1 - \cos {\left (c + d x \right )}} \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate(1/(1-cos(d*x+c))**(1/2)/cos(d*x+c)**(3/2),x)
 

Output:

Integral(1/(sqrt(1 - cos(c + d*x))*cos(c + d*x)**(3/2)), x)
 

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 400, normalized size of antiderivative = 4.82 \[ \int \frac {1}{\sqrt {1-\cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {\sqrt {2} {\left (2 \, \sqrt {2} \sin \left (d x + c\right ) \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + 2 \, {\left (\sqrt {2} \cos \left (d x + c\right ) + \sqrt {2}\right )} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \log \left (\frac {4 \, {\left ({\left | i \, e^{\left (i \, d x + i \, c\right )} - i \right |}^{2} + 2 \, \sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} {\left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2}\right )} - 2 \, {\left (\sqrt {2} {\left | i \, e^{\left (i \, d x + i \, c\right )} - i \right |} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )\right )} {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} + 4\right )}}{{\left | i \, e^{\left (i \, d x + i \, c\right )} - i \right |}^{2}}\right )\right )}}{2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} d} \] Input:

integrate(1/(1-cos(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x, algorithm="maxima")
 

Output:

-1/2*sqrt(2)*(2*sqrt(2)*sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos 
(2*d*x + 2*c) + 1)) + 2*(sqrt(2)*cos(d*x + c) + sqrt(2))*cos(1/2*arctan2(s 
in(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - (cos(2*d*x + 2*c)^2 + sin(2*d*x 
+ 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*log(4*(abs(I*e^(I*d*x + I*c) - I) 
^2 + 2*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 
 1)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + sin(1/2* 
arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2) - 2*(sqrt(2)*abs(I*e^( 
I*d*x + I*c) - I)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) 
 - 2*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*(co 
s(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4) + 4) 
/abs(I*e^(I*d*x + I*c) - I)^2))/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 
+ 2*cos(2*d*x + 2*c) + 1)^(1/4)*d)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 264 vs. \(2 (72) = 144\).

Time = 0.50 (sec) , antiderivative size = 264, normalized size of antiderivative = 3.18 \[ \int \frac {1}{\sqrt {1-\cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {\frac {4 \, {\left (\frac {\sqrt {2} \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2}}{\mathrm {sgn}\left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {\sqrt {2}}{\mathrm {sgn}\left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}\right )}}{\sqrt {\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{4} - 6 \, \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + 1}} - \frac {\sqrt {2} \log \left (\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} - \sqrt {\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{4} - 6 \, \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + 1} + 1\right )}{\mathrm {sgn}\left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {\sqrt {2} \log \left ({\left | -\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + \sqrt {\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{4} - 6 \, \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + 1} + 3 \right |}\right )}{\mathrm {sgn}\left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {\sqrt {2} \log \left ({\left | -\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + \sqrt {\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{4} - 6 \, \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + 1} + 1 \right |}\right )}{\mathrm {sgn}\left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{2 \, d} \] Input:

integrate(1/(1-cos(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

-1/2*(4*(sqrt(2)*tan(1/4*d*x + 1/4*c)^2/sgn(sin(1/2*d*x + 1/2*c)) - sqrt(2 
)/sgn(sin(1/2*d*x + 1/2*c)))/sqrt(tan(1/4*d*x + 1/4*c)^4 - 6*tan(1/4*d*x + 
 1/4*c)^2 + 1) - sqrt(2)*log(tan(1/4*d*x + 1/4*c)^2 - sqrt(tan(1/4*d*x + 1 
/4*c)^4 - 6*tan(1/4*d*x + 1/4*c)^2 + 1) + 1)/sgn(sin(1/2*d*x + 1/2*c)) + s 
qrt(2)*log(abs(-tan(1/4*d*x + 1/4*c)^2 + sqrt(tan(1/4*d*x + 1/4*c)^4 - 6*t 
an(1/4*d*x + 1/4*c)^2 + 1) + 3))/sgn(sin(1/2*d*x + 1/2*c)) + sqrt(2)*log(a 
bs(-tan(1/4*d*x + 1/4*c)^2 + sqrt(tan(1/4*d*x + 1/4*c)^4 - 6*tan(1/4*d*x + 
 1/4*c)^2 + 1) + 1))/sgn(sin(1/2*d*x + 1/2*c)))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {1-\cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {1-\cos \left (c+d\,x\right )}} \,d x \] Input:

int(1/(cos(c + d*x)^(3/2)*(1 - cos(c + d*x))^(1/2)),x)
 

Output:

int(1/(cos(c + d*x)^(3/2)*(1 - cos(c + d*x))^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {1-\cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)} \, dx=-\left (\int \frac {\sqrt {-\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}-\cos \left (d x +c \right )^{2}}d x \right ) \] Input:

int(1/(1-cos(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x)
 

Output:

 - int((sqrt( - cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/(cos(c + d*x)**3 - c 
os(c + d*x)**2),x)