\(\int (a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x) \, dx\) [300]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 64 \[ \int (a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x) \, dx=\frac {4 a^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \] Output:

4*a^2*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*sec(d*x+c)^( 
1/2)/d+2*a^2*sec(d*x+c)^(1/2)*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 1.19 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.75 \[ \int (a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x) \, dx=\frac {2 a^2 \sqrt {\sec (c+d x)} \left (2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sin (c+d x)\right )}{d} \] Input:

Integrate[(a + a*Cos[c + d*x])^2*Sec[c + d*x]^(3/2),x]
 

Output:

(2*a^2*Sqrt[Sec[c + d*x]]*(2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] 
+ Sin[c + d*x]))/d
 

Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3042, 3717, 3042, 4275, 3042, 4258, 3042, 3120, 4531}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^2}{\sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4275

\(\displaystyle \int \frac {\sec ^2(c+d x) a^2+a^2}{\sqrt {\sec (c+d x)}}dx+2 a^2 \int \sqrt {\sec (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 a^2 \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4258

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3120

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}\)

\(\Big \downarrow \) 4531

\(\displaystyle \frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}\)

Input:

Int[(a + a*Cos[c + d*x])^2*Sec[c + d*x]^(3/2),x]
 

Output:

(4*a^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d 
+ (2*a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4275
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^2, x_Symbol] :> Simp[2*a*(b/d)   Int[(d*Csc[e + f*x])^(n + 1), x], x] 
 + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, 
 e, f, n}, x]
 

rule 4531
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*m)), x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && EqQ[C*m + A*(m + 1), 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(184\) vs. \(2(59)=118\).

Time = 4.10 (sec) , antiderivative size = 185, normalized size of antiderivative = 2.89

method result size
default \(-\frac {4 a^{2} \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(185\)
parts \(-\frac {2 a^{2} \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {2 a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {4 a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(456\)

Input:

int((a+a*cos(d*x+c))^2*sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-4*a^2*(-cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2) 
^(1/2)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/ 
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2* 
c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2 
*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.20 \[ \int (a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x) \, dx=-\frac {2 \, {\left (i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - \frac {a^{2} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{d} \] Input:

integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^(3/2),x, algorithm="fricas")
 

Output:

-2*(I*sqrt(2)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c) 
) - I*sqrt(2)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c) 
) - a^2*sin(d*x + c)/sqrt(cos(d*x + c)))/d
 

Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**2*sec(d*x+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x) \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^(3/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

integrate((a*cos(d*x + c) + a)^2*sec(d*x + c)^(3/2), x)
 

Giac [F]

\[ \int (a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x) \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^2*sec(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

integrate((a*cos(d*x + c) + a)^2*sec(d*x + c)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x) \, dx=\int {\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2 \,d x \] Input:

int((1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))^2,x)
 

Output:

int((1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))^2, x)
 

Reduce [F]

\[ \int (a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x) \, dx=a^{2} \left (2 \left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )d x \right )+\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )d x +\int \sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )d x \right ) \] Input:

int((a+a*cos(d*x+c))^2*sec(d*x+c)^(3/2),x)
 

Output:

a**2*(2*int(sqrt(sec(c + d*x))*cos(c + d*x)*sec(c + d*x),x) + int(sqrt(sec 
(c + d*x))*cos(c + d*x)**2*sec(c + d*x),x) + int(sqrt(sec(c + d*x))*sec(c 
+ d*x),x))