\(\int \frac {(a+a \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx\) [309]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 161 \[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=\frac {28 a^3 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {52 a^3 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^3 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {6 a^3 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {52 a^3 \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \] Output:

28/5*a^3*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c) 
^(1/2)/d+52/21*a^3*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2)) 
*sec(d*x+c)^(1/2)/d+2/7*a^3*sin(d*x+c)/d/sec(d*x+c)^(5/2)+6/5*a^3*sin(d*x+ 
c)/d/sec(d*x+c)^(3/2)+52/21*a^3*sin(d*x+c)/d/sec(d*x+c)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.02 (sec) , antiderivative size = 146, normalized size of antiderivative = 0.91 \[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=\frac {a^3 \left (-2352 i+\frac {4704 i \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )}{\sqrt {1+e^{2 i (c+d x)}}}-1040 i \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right ) \sec (c+d x)+1070 \sin (c+d x)+252 \sin (2 (c+d x))+30 \sin (3 (c+d x))\right )}{420 d \sqrt {\sec (c+d x)}} \] Input:

Integrate[(a + a*Cos[c + d*x])^3/Sqrt[Sec[c + d*x]],x]
 

Output:

(a^3*(-2352*I + ((4704*I)*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + 
 d*x))])/Sqrt[1 + E^((2*I)*(c + d*x))] - (1040*I)*Sqrt[1 + E^((2*I)*(c + d 
*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]*Sec[c + d*x] 
+ 1070*Sin[c + d*x] + 252*Sin[2*(c + d*x)] + 30*Sin[3*(c + d*x)]))/(420*d* 
Sqrt[Sec[c + d*x]])
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 3717, 3042, 4278, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^3}{\sqrt {\sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^3}{\sec ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 4278

\(\displaystyle \int \left (\frac {3 a^3}{\sec ^{\frac {3}{2}}(c+d x)}+\frac {3 a^3}{\sec ^{\frac {5}{2}}(c+d x)}+\frac {a^3}{\sec ^{\frac {7}{2}}(c+d x)}+\frac {a^3}{\sqrt {\sec (c+d x)}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {6 a^3 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {52 a^3 \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {52 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {28 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\)

Input:

Int[(a + a*Cos[c + d*x])^3/Sqrt[Sec[c + d*x]],x]
 

Output:

(28*a^3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/( 
5*d) + (52*a^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d 
*x]])/(21*d) + (2*a^3*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (6*a^3*Sin[ 
c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (52*a^3*Sin[c + d*x])/(21*d*Sqrt[Sec[ 
c + d*x]])
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4278
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_), x_Symbol] :> Int[ExpandTrig[(a + b*csc[e + f*x])^m*(d*csc[e + f 
*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && I 
GtQ[m, 0] && RationalQ[n]
 
Maple [A] (verified)

Time = 14.60 (sec) , antiderivative size = 272, normalized size of antiderivative = 1.69

method result size
default \(-\frac {4 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{3} \left (120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-432 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+602 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-208 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+65 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{105 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(272\)
parts \(\frac {2 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (48 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}-120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-72 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {6 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(723\)

Input:

int((a+a*cos(d*x+c))^3/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-4/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(120*co 
s(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8-432*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1 
/2*c)^6+602*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-208*sin(1/2*d*x+1/2*c) 
^2*cos(1/2*d*x+1/2*c)+65*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c 
)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*(sin(1/2*d*x+1/2*c) 
^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^ 
(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1 
/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.06 \[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=-\frac {2 \, {\left (65 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 65 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 147 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 147 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (15 \, a^{3} \cos \left (d x + c\right )^{3} + 63 \, a^{3} \cos \left (d x + c\right )^{2} + 130 \, a^{3} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{105 \, d} \] Input:

integrate((a+a*cos(d*x+c))^3/sec(d*x+c)^(1/2),x, algorithm="fricas")
 

Output:

-2/105*(65*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d 
*x + c)) - 65*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*si 
n(d*x + c)) - 147*I*sqrt(2)*a^3*weierstrassZeta(-4, 0, weierstrassPInverse 
(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 147*I*sqrt(2)*a^3*weierstrassZet 
a(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (15* 
a^3*cos(d*x + c)^3 + 63*a^3*cos(d*x + c)^2 + 130*a^3*cos(d*x + c))*sin(d*x 
 + c)/sqrt(cos(d*x + c)))/d
 

Sympy [F]

\[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=a^{3} \left (\int \frac {3 \cos {\left (c + d x \right )}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {3 \cos ^{2}{\left (c + d x \right )}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {\cos ^{3}{\left (c + d x \right )}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {1}{\sqrt {\sec {\left (c + d x \right )}}}\, dx\right ) \] Input:

integrate((a+a*cos(d*x+c))**3/sec(d*x+c)**(1/2),x)
 

Output:

a**3*(Integral(3*cos(c + d*x)/sqrt(sec(c + d*x)), x) + Integral(3*cos(c + 
d*x)**2/sqrt(sec(c + d*x)), x) + Integral(cos(c + d*x)**3/sqrt(sec(c + d*x 
)), x) + Integral(1/sqrt(sec(c + d*x)), x))
 

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^3/sec(d*x+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate((a*cos(d*x + c) + a)^3/sqrt(sec(d*x + c)), x)
 

Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^3/sec(d*x+c)^(1/2),x, algorithm="giac")
 

Output:

integrate((a*cos(d*x + c) + a)^3/sqrt(sec(d*x + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((a + a*cos(c + d*x))^3/(1/cos(c + d*x))^(1/2),x)
 

Output:

int((a + a*cos(c + d*x))^3/(1/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^3}{\sqrt {\sec (c+d x)}} \, dx=a^{3} \left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )}d x +3 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )}{\sec \left (d x +c \right )}d x \right )+\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}}{\sec \left (d x +c \right )}d x +3 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\sec \left (d x +c \right )}d x \right )\right ) \] Input:

int((a+a*cos(d*x+c))^3/sec(d*x+c)^(1/2),x)
                                                                                    
                                                                                    
 

Output:

a**3*(int(sqrt(sec(c + d*x))/sec(c + d*x),x) + 3*int((sqrt(sec(c + d*x))*c 
os(c + d*x))/sec(c + d*x),x) + int((sqrt(sec(c + d*x))*cos(c + d*x)**3)/se 
c(c + d*x),x) + 3*int((sqrt(sec(c + d*x))*cos(c + d*x)**2)/sec(c + d*x),x) 
)