\(\int \frac {\sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx\) [317]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 164 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {3 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {5 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}-\frac {3 \sqrt {\sec (c+d x)} \sin (c+d x)}{a d}+\frac {5 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a d}-\frac {\sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{d (a+a \sec (c+d x))} \] Output:

3*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^(1/2)/ 
a/d+5/3*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*sec(d*x+c) 
^(1/2)/a/d-3*sec(d*x+c)^(1/2)*sin(d*x+c)/a/d+5/3*sec(d*x+c)^(3/2)*sin(d*x+ 
c)/a/d-sec(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.09 (sec) , antiderivative size = 285, normalized size of antiderivative = 1.74 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (\frac {2 i \sqrt {2} e^{-i (c+d x)} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (9 \left (1+e^{2 i (c+d x)}\right )+9 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )-5 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{-1+e^{2 i c}}-\sqrt {\sec (c+d x)} \left (18 \cos (d x) \csc (c)+\sec (c+d x) \left (-5 \sec \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {3}{2} (c+d x)\right )+\tan \left (\frac {1}{2} (c+d x)\right )\right )\right )\right )}{3 a d (1+\cos (c+d x))} \] Input:

Integrate[Sec[c + d*x]^(5/2)/(a + a*Cos[c + d*x]),x]
 

Output:

(Cos[(c + d*x)/2]^2*(((2*I)*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c 
+ d*x)))]*(9*(1 + E^((2*I)*(c + d*x))) + 9*(-1 + E^((2*I)*c))*Sqrt[1 + E^( 
(2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] 
- 5*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hyper 
geometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(E^(I*(c + d*x))*(-1 + 
 E^((2*I)*c))) - Sqrt[Sec[c + d*x]]*(18*Cos[d*x]*Csc[c] + Sec[c + d*x]*(-5 
*Sec[(c + d*x)/2]*Sin[(3*(c + d*x))/2] + Tan[(c + d*x)/2]))))/(3*a*d*(1 + 
Cos[c + d*x]))
 

Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.02, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.609, Rules used = {3042, 3717, 3042, 4305, 27, 3042, 4274, 3042, 4255, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{a \cos (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}{a \sin \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{a \sec (c+d x)+a}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}{a \csc \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 4305

\(\displaystyle -\frac {\int \frac {1}{2} \sec ^{\frac {3}{2}}(c+d x) (3 a-5 a \sec (c+d x))dx}{a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \sec ^{\frac {3}{2}}(c+d x) (3 a-5 a \sec (c+d x))dx}{2 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (3 a-5 a \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{2 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4274

\(\displaystyle -\frac {3 a \int \sec ^{\frac {3}{2}}(c+d x)dx-5 a \int \sec ^{\frac {5}{2}}(c+d x)dx}{2 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3 a \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx-5 a \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx}{2 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4255

\(\displaystyle -\frac {3 a \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\sec (c+d x)}}dx\right )-5 a \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )}{2 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3 a \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )-5 a \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )}{2 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4258

\(\displaystyle -\frac {3 a \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\right )-5 a \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )}{2 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3 a \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )-5 a \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )}{2 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {3 a \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-5 a \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )}{2 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {3 a \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-5 a \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )}{2 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{d (a \sec (c+d x)+a)}\)

Input:

Int[Sec[c + d*x]^(5/2)/(a + a*Cos[c + d*x]),x]
 

Output:

-((Sec[c + d*x]^(5/2)*Sin[c + d*x])/(d*(a + a*Sec[c + d*x]))) - (3*a*((-2* 
Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*Sq 
rt[Sec[c + d*x]]*Sin[c + d*x])/d) - 5*a*((2*Sqrt[Cos[c + d*x]]*EllipticF[( 
c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*Sec[c + d*x]^(3/2)*Sin[c + d 
*x])/(3*d)))/(2*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4305
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_)), x_Symbol] :> Simp[d^2*Cot[e + f*x]*((d*Csc[e + f*x])^(n - 2)/(f*(a + 
b*Csc[e + f*x]))), x] - Simp[d^2/(a*b)   Int[(d*Csc[e + f*x])^(n - 2)*(b*(n 
 - 2) - a*(n - 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ 
[a^2 - b^2, 0] && GtQ[n, 1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(412\) vs. \(2(149)=298\).

Time = 4.58 (sec) , antiderivative size = 413, normalized size of antiderivative = 2.52

method result size
default \(\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (10 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-18 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-36 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-5 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+44 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-11 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{3 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(413\)

Input:

int(sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

1/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a/cos(1/2*d* 
x+1/2*c)/sin(1/2*d*x+1/2*c)^3/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c) 
^2+1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(10*cos(1/2*d*x 
+1/2*c)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2) 
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2-18*cos(1/2*d*x+1/2* 
c)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*s 
in(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2-36*sin(1/2*d*x+1/2*c)^6- 
5*cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9*cos(1/2*d*x+1/2*c)*(2*sin 
(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2* 
d*x+1/2*c),2^(1/2))+44*sin(1/2*d*x+1/2*c)^4-11*sin(1/2*d*x+1/2*c)^2)/(2*co 
s(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.51 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=-\frac {5 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 9 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 9 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (9 \, \cos \left (d x + c\right )^{2} + 4 \, \cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \] Input:

integrate(sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")
 

Output:

-1/6*(5*(I*sqrt(2)*cos(d*x + c)^2 + I*sqrt(2)*cos(d*x + c))*weierstrassPIn 
verse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*(-I*sqrt(2)*cos(d*x + c)^2 
 - I*sqrt(2)*cos(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin 
(d*x + c)) + 9*(-I*sqrt(2)*cos(d*x + c)^2 - I*sqrt(2)*cos(d*x + c))*weiers 
trassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) 
) + 9*(I*sqrt(2)*cos(d*x + c)^2 + I*sqrt(2)*cos(d*x + c))*weierstrassZeta( 
-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(9*c 
os(d*x + c)^2 + 4*cos(d*x + c) - 2)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d* 
cos(d*x + c)^2 + a*d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)**(5/2)/(a+a*cos(d*x+c)),x)
 

Output:

Timed out
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {5}{2}}}{a \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate(sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")
 

Output:

integrate(sec(d*x + c)^(5/2)/(a*cos(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {5}{2}}}{a \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate(sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="giac")
 

Output:

integrate(sec(d*x + c)^(5/2)/(a*cos(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{a+a\,\cos \left (c+d\,x\right )} \,d x \] Input:

int((1/cos(c + d*x))^(5/2)/(a + a*cos(c + d*x)),x)
 

Output:

int((1/cos(c + d*x))^(5/2)/(a + a*cos(c + d*x)), x)
 

Reduce [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right )+1}d x}{a} \] Input:

int(sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x)
 

Output:

int((sqrt(sec(c + d*x))*sec(c + d*x)**2)/(cos(c + d*x) + 1),x)/a