\(\int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx\) [322]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 140 \[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {3 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {5 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}+\frac {5 \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \] Output:

-3*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^(1/2) 
/a/d+5/3*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*sec(d*x+c 
)^(1/2)/a/d+5/3*sin(d*x+c)/a/d/sec(d*x+c)^(1/2)-sin(d*x+c)/d/sec(d*x+c)^(1 
/2)/(a+a*sec(d*x+c))
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 5.11 (sec) , antiderivative size = 312, normalized size of antiderivative = 2.23 \[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (-\frac {2 i \sqrt {2} e^{-i (c+d x)} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (9 \left (1+e^{2 i (c+d x)}\right )+9 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )+5 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{-1+e^{2 i c}}+2 \sqrt {\sec (c+d x)} \left (3 (2+\cos (2 c)) \cos (d x) \csc (c)+\cos (2 d x) \sin (2 c)-3 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {d x}{2}\right )-6 \cos (c) \sin (d x)+\cos (2 c) \sin (2 d x)-3 \tan \left (\frac {c}{2}\right )\right )\right )}{3 a d (1+\cos (c+d x))} \] Input:

Integrate[1/((a + a*Cos[c + d*x])*Sec[c + d*x]^(5/2)),x]
 

Output:

(Cos[(c + d*x)/2]^2*(((-2*I)*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c 
 + d*x)))]*(9*(1 + E^((2*I)*(c + d*x))) + 9*(-1 + E^((2*I)*c))*Sqrt[1 + E^ 
((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] 
 + 5*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hype 
rgeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(E^(I*(c + d*x))*(-1 
+ E^((2*I)*c))) + 2*Sqrt[Sec[c + d*x]]*(3*(2 + Cos[2*c])*Cos[d*x]*Csc[c] + 
 Cos[2*d*x]*Sin[2*c] - 3*Sec[c/2]*Sec[(c + d*x)/2]*Sin[(d*x)/2] - 6*Cos[c] 
*Sin[d*x] + Cos[2*c]*Sin[2*d*x] - 3*Tan[c/2])))/(3*a*d*(1 + Cos[c + d*x]))
 

Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.03, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.609, Rules used = {3042, 3717, 3042, 4306, 27, 3042, 4274, 3042, 4256, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 4306

\(\displaystyle -\frac {\int -\frac {5 a-3 a \sec (c+d x)}{2 \sec ^{\frac {3}{2}}(c+d x)}dx}{a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {5 a-3 a \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {5 a-3 a \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {5 a \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)}dx-3 a \int \frac {1}{\sqrt {\sec (c+d x)}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5 a \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx-3 a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4256

\(\displaystyle \frac {5 a \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5 a \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {5 a \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5 a \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {5 a \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-\frac {6 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {5 a \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )-\frac {6 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

Input:

Int[1/((a + a*Cos[c + d*x])*Sec[c + d*x]^(5/2)),x]
 

Output:

-(Sin[c + d*x]/(d*Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x]))) + ((-6*a*Sqrt[ 
Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + 5*a*((2*Sq 
rt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2* 
Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])))/(2*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4306
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_)), x_Symbol] :> Simp[Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(a + b*Csc[e + 
f*x]))), x] - Simp[1/a^2   Int[(d*Csc[e + f*x])^n*(a*(n - 1) - b*n*Csc[e + 
f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, 0 
]
 
Maple [A] (verified)

Time = 4.39 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.54

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \left (5 \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )-8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+18 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-7 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{3 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(215\)

Input:

int(1/(a+a*cos(d*x+c))/sec(d*x+c)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-1/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+ 
1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(5*El 
lipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2) 
))-8*sin(1/2*d*x+1/2*c)^6+18*sin(1/2*d*x+1/2*c)^4-7*sin(1/2*d*x+1/2*c)^2)/ 
a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/ 
sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
                                                                                    
                                                                                    
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.48 \[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {5 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 9 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 9 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (2 \, \cos \left (d x + c\right )^{2} + 5 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \] Input:

integrate(1/(a+a*cos(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="fricas")
 

Output:

-1/6*(5*(I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, co 
s(d*x + c) + I*sin(d*x + c)) + 5*(-I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*wei 
erstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 9*(I*sqrt(2)*cos( 
d*x + c) + I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, co 
s(d*x + c) + I*sin(d*x + c))) + 9*(-I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*we 
ierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + 
 c))) - 2*(2*cos(d*x + c)^2 + 5*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + 
c)))/(a*d*cos(d*x + c) + a*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate(1/(a+a*cos(d*x+c))/sec(d*x+c)**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/(a+a*cos(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="maxima")
 

Output:

integrate(1/((a*cos(d*x + c) + a)*sec(d*x + c)^(5/2)), x)
 

Giac [F]

\[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/(a+a*cos(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="giac")
 

Output:

integrate(1/((a*cos(d*x + c) + a)*sec(d*x + c)^(5/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {1}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \] Input:

int(1/((1/cos(c + d*x))^(5/2)*(a + a*cos(c + d*x))),x)
 

Output:

int(1/((1/cos(c + d*x))^(5/2)*(a + a*cos(c + d*x))), x)
 

Reduce [F]

\[ \int \frac {1}{(a+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\int \frac {\sqrt {\sec \left (d x +c \right )}}{\cos \left (d x +c \right ) \sec \left (d x +c \right )^{3}+\sec \left (d x +c \right )^{3}}d x}{a} \] Input:

int(1/(a+a*cos(d*x+c))/sec(d*x+c)^(5/2),x)
 

Output:

int(sqrt(sec(c + d*x))/(cos(c + d*x)*sec(c + d*x)**3 + sec(c + d*x)**3),x) 
/a