\(\int (a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x) \, dx\) [349]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 96 \[ \int (a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x) \, dx=\frac {2 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {2 a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}} \] Output:

2*a^(3/2)*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))*cos(d*x+c)^(1/ 
2)*sec(d*x+c)^(1/2)/d+2*a^2*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*cos(d*x+c)) 
^(1/2)
 

Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.89 \[ \int (a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x) \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (\sqrt {2} \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\cos (c+d x)}+2 \sin \left (\frac {1}{2} (c+d x)\right )\right )}{d} \] Input:

Integrate[(a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(3/2),x]
 

Output:

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*(Sqrt[2] 
*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]]*Sqrt[Cos[c + d*x]] + 2*Sin[(c + d*x)/2]) 
)/d
 

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4710, 3042, 3241, 27, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\cos (c+d x) a+a)^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3241

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-2 a \int -\frac {\sqrt {\cos (c+d x) a+a}}{2 \sqrt {\cos (c+d x)}}dx\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (a \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx+\frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3253

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {2 a \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )\)

\(\Big \downarrow \) 223

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )\)

Input:

Int[(a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(3/2),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a^(3/2)*ArcSin[(Sqrt[a]*Sin[c + 
d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (2*a^2*Sin[c + d*x])/(d*Sqrt[Cos[c + 
d*x]]*Sqrt[a + a*Cos[c + d*x]]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3241
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b 
*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a* 
d))), x] + Simp[b^2/(d*(n + 1)*(b*c + a*d))   Int[(a + b*Sin[e + f*x])^(m - 
 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b* 
c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
 && GtQ[m, 1] && LtQ[n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || 
 (IntegerQ[m] && EqQ[c, 0]))
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [A] (verified)

Time = 6.90 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.09

method result size
default \(\frac {2 \sqrt {a \left (\cos \left (d x +c \right )+1\right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{\frac {3}{2}} \left (\left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )+\sin \left (d x +c \right )\right ) a}{d \left (\cos \left (d x +c \right )+1\right )}\) \(105\)

Input:

int((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2/d*(a*(cos(d*x+c)+1))^(1/2)*cos(d*x+c)*sec(d*x+c)^(3/2)*((cos(d*x+c)+1)*( 
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(cos(d*x+c) 
+1))^(1/2))+sin(d*x+c))/(cos(d*x+c)+1)*a
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.95 \[ \int (a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x) \, dx=-\frac {2 \, {\left ({\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {\sqrt {a \cos \left (d x + c\right ) + a} a \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{d \cos \left (d x + c\right ) + d} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^(3/2),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

-2*((a*cos(d*x + c) + a)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos( 
d*x + c))/(sqrt(a)*sin(d*x + c))) - sqrt(a*cos(d*x + c) + a)*a*sin(d*x + c 
)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d)
 

Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(3/2)*sec(d*x+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 997 vs. \(2 (82) = 164\).

Time = 0.30 (sec) , antiderivative size = 997, normalized size of antiderivative = 10.39 \[ \int (a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x) \, dx=\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^(3/2),x, algorithm="maxima")
 

Output:

1/2*((a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2 
*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1 
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin( 
2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos 
(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 
 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) 
*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(si 
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), c 
os(2*d*x + 2*c)))) + 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c) 
^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 
cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(s 
in(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2* 
c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), co 
s(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) 
+ sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2 
(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - a*arctan2((cos(2*d*x + 2*c)^ 
2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin 
(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2 
*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c),...
 

Giac [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x) \, dx=\int {\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2} \,d x \] Input:

int((1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))^(3/2),x)
 

Output:

int((1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))^(3/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int (a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x) \, dx=\sqrt {a}\, a \left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )d x +\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \sec \left (d x +c \right )d x \right ) \] Input:

int((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^(3/2),x)
 

Output:

sqrt(a)*a*(int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*cos(c + d*x)*sec( 
c + d*x),x) + int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*sec(c + d*x),x 
))