\(\int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {9}{2}}(c+d x) \, dx\) [354]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 161 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {9}{2}}(c+d x) \, dx=\frac {92 a^3 \sqrt {\sec (c+d x)} \sin (c+d x)}{21 d \sqrt {a+a \cos (c+d x)}}+\frac {46 a^3 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d \sqrt {a+a \cos (c+d x)}}+\frac {6 a^3 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 \sqrt {a+a \cos (c+d x)} \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{7 d} \] Output:

92/21*a^3*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+46/21*a^3*s 
ec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+6/7*a^3*sec(d*x+c)^(5/ 
2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2/7*a^2*(a+a*cos(d*x+c))^(1/2)*sec( 
d*x+c)^(7/2)*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 5.82 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.46 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {9}{2}}(c+d x) \, dx=\frac {a^2 \sqrt {a (1+\cos (c+d x))} (29+93 \cos (c+d x)+23 \cos (2 (c+d x))+23 \cos (3 (c+d x))) \sec ^{\frac {7}{2}}(c+d x) \tan \left (\frac {1}{2} (c+d x)\right )}{21 d} \] Input:

Integrate[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]^(9/2),x]
 

Output:

(a^2*Sqrt[a*(1 + Cos[c + d*x])]*(29 + 93*Cos[c + d*x] + 23*Cos[2*(c + d*x) 
] + 23*Cos[3*(c + d*x)])*Sec[c + d*x]^(7/2)*Tan[(c + d*x)/2])/(21*d)
 

Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.16, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {3042, 4710, 3042, 3241, 27, 3042, 3459, 3042, 3251, 3042, 3250}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {9}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{9/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\cos (c+d x) a+a)^{5/2}}{\cos ^{\frac {9}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 3241

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}-\frac {2}{7} a \int -\frac {\sqrt {\cos (c+d x) a+a} (11 \cos (c+d x) a+15 a)}{2 \cos ^{\frac {7}{2}}(c+d x)}dx\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} a \int \frac {\sqrt {\cos (c+d x) a+a} (11 \cos (c+d x) a+15 a)}{\cos ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (11 \sin \left (c+d x+\frac {\pi }{2}\right ) a+15 a\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3459

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} a \left (23 a \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {6 a^2 \sin (c+d x)}{d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} a \left (23 a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {6 a^2 \sin (c+d x)}{d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3251

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} a \left (23 a \left (\frac {2}{3} \int \frac {\sqrt {\cos (c+d x) a+a}}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {6 a^2 \sin (c+d x)}{d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} a \left (23 a \left (\frac {2}{3} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {6 a^2 \sin (c+d x)}{d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3250

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} a \left (\frac {6 a^2 \sin (c+d x)}{d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+23 a \left (\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {4 a \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )\right )\right )\)

Input:

Int[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]^(9/2),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a^2*Sqrt[a + a*Cos[c + d*x]]*Sin 
[c + d*x])/(7*d*Cos[c + d*x]^(7/2)) + (a*((6*a^2*Sin[c + d*x])/(d*Cos[c + 
d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) + 23*a*((2*a*Sin[c + d*x])/(3*d*Cos[c 
 + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) + (4*a*Sin[c + d*x])/(3*d*Sqrt[Cos 
[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]))))/7)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3241
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b 
*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a* 
d))), x] + Simp[b^2/(d*(n + 1)*(b*c + a*d))   Int[(a + b*Sin[e + f*x])^(m - 
 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b* 
c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
 && GtQ[m, 1] && LtQ[n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || 
 (IntegerQ[m] && EqQ[c, 0]))
 

rule 3250
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2), x_Symbol] :> Simp[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sq 
rt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3251
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e 
+ f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] + Sim 
p[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2)))   Int[Sqrt[a + b*Sin[e 
+ f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [A] (verified)

Time = 4.93 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.54

\[\frac {2 \sin \left (d x +c \right ) \left (46 \cos \left (d x +c \right )^{3}+23 \cos \left (d x +c \right )^{2}+12 \cos \left (d x +c \right )+3\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sec \left (d x +c \right )^{\frac {9}{2}} \cos \left (d x +c \right ) \sqrt {2}\, a^{2}}{21 d \left (\cos \left (d x +c \right )+1\right )}\]

Input:

int((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^(9/2),x)
 

Output:

2/21/d*sin(d*x+c)*(46*cos(d*x+c)^3+23*cos(d*x+c)^2+12*cos(d*x+c)+3)*(a*cos 
(1/2*d*x+1/2*c)^2)^(1/2)*sec(d*x+c)^(9/2)*cos(d*x+c)/(cos(d*x+c)+1)*2^(1/2 
)*a^2
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.58 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {9}{2}}(c+d x) \, dx=\frac {2 \, {\left (46 \, a^{2} \cos \left (d x + c\right )^{3} + 23 \, a^{2} \cos \left (d x + c\right )^{2} + 12 \, a^{2} \cos \left (d x + c\right ) + 3 \, a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{21 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )} \sqrt {\cos \left (d x + c\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^(9/2),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

2/21*(46*a^2*cos(d*x + c)^3 + 23*a^2*cos(d*x + c)^2 + 12*a^2*cos(d*x + c) 
+ 3*a^2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/((d*cos(d*x + c)^4 + d*cos( 
d*x + c)^3)*sqrt(cos(d*x + c)))
 

Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {9}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(5/2)*sec(d*x+c)**(9/2),x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.51 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {9}{2}}(c+d x) \, dx=\frac {8 \, {\left (\frac {21 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {56 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {63 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {36 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac {8 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{2}}{21 \, d {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {9}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {9}{2}} {\left (\frac {2 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {\sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + 1\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^(9/2),x, algorithm="maxima")
 

Output:

8/21*(21*sqrt(2)*a^(5/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 56*sqrt(2)*a^(5 
/2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 63*sqrt(2)*a^(5/2)*sin(d*x + c)^ 
5/(cos(d*x + c) + 1)^5 - 36*sqrt(2)*a^(5/2)*sin(d*x + c)^7/(cos(d*x + c) + 
 1)^7 + 8*sqrt(2)*a^(5/2)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9)*(sin(d*x + 
c)^2/(cos(d*x + c) + 1)^2 + 1)^2/(d*(sin(d*x + c)/(cos(d*x + c) + 1) + 1)^ 
(9/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(2*sin(d*x + c)^2/(cos( 
d*x + c) + 1)^2 + sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 1))
 

Giac [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {9}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^(9/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 46.73 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.41 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {9}{2}}(c+d x) \, dx=\frac {-\frac {35\,a^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}\,\sqrt {\frac {2\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1}}}{2}+35\,a^2\,\sin \left (\frac {3\,c}{2}+\frac {3\,d\,x}{2}\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}\,\sqrt {\frac {2\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1}}+\frac {23\,a^2\,\sin \left (\frac {7\,c}{2}+\frac {7\,d\,x}{2}\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}\,\sqrt {\frac {2\,{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1}}}{2}}{\frac {63\,d\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8}+\frac {63\,d\,\cos \left (\frac {3\,c}{2}+\frac {3\,d\,x}{2}\right )}{8}+\frac {21\,d\,\cos \left (\frac {5\,c}{2}+\frac {5\,d\,x}{2}\right )}{8}+\frac {21\,d\,\cos \left (\frac {7\,c}{2}+\frac {7\,d\,x}{2}\right )}{8}} \] Input:

int((1/cos(c + d*x))^(9/2)*(a + a*cos(c + d*x))^(5/2),x)
 

Output:

(35*a^2*sin((3*c)/2 + (3*d*x)/2)*(a + a*cos(c + d*x))^(1/2)*((2*exp(c*1i + 
 d*x*1i))/(exp(c*2i + d*x*2i) + 1))^(1/2) - (35*a^2*sin(c/2 + (d*x)/2)*(a 
+ a*cos(c + d*x))^(1/2)*((2*exp(c*1i + d*x*1i))/(exp(c*2i + d*x*2i) + 1))^ 
(1/2))/2 + (23*a^2*sin((7*c)/2 + (7*d*x)/2)*(a + a*cos(c + d*x))^(1/2)*((2 
*exp(c*1i + d*x*1i))/(exp(c*2i + d*x*2i) + 1))^(1/2))/2)/((63*d*cos(c/2 + 
(d*x)/2))/8 + (63*d*cos((3*c)/2 + (3*d*x)/2))/8 + (21*d*cos((5*c)/2 + (5*d 
*x)/2))/8 + (21*d*cos((7*c)/2 + (7*d*x)/2))/8)
 

Reduce [F]

\[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {9}{2}}(c+d x) \, dx=\sqrt {a}\, a^{2} \left (2 \left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{4}d x \right )+\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{4}d x +\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{4}d x \right ) \] Input:

int((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^(9/2),x)
 

Output:

sqrt(a)*a**2*(2*int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*cos(c + d*x) 
*sec(c + d*x)**4,x) + int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*cos(c 
+ d*x)**2*sec(c + d*x)**4,x) + int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 
1)*sec(c + d*x)**4,x))