\(\int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {5}{2}}(c+d x) \, dx\) [356]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 138 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {5}{2}}(c+d x) \, dx=\frac {2 a^{5/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {14 a^3 \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 \sqrt {a+a \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d} \] Output:

2*a^(5/2)*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))*cos(d*x+c)^(1/ 
2)*sec(d*x+c)^(1/2)/d+14/3*a^3*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*cos(d*x+ 
c))^(1/2)+2/3*a^2*(a+a*cos(d*x+c))^(1/2)*sec(d*x+c)^(3/2)*sin(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 6.34 (sec) , antiderivative size = 404, normalized size of antiderivative = 2.93 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {5}{2}}(c+d x) \, dx=\frac {(a (1+\cos (c+d x)))^{5/2} \csc ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec ^5\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\frac {1}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \sqrt {1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )} \left (256 \cos ^4\left (\frac {1}{2} (c+d x)\right ) \, _3F_2\left (\frac {3}{2},2,\frac {7}{2};1,\frac {9}{2};2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right ) \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )+512 \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {7}{2},\frac {9}{2},2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right ) \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (2-3 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )+\sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )\right )+\frac {21 \sqrt {2} \arcsin \left (\sqrt {2} \sqrt {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \left (15-10 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )+3 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )\right )}{\sqrt {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}}-14 \sqrt {1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )} \left (45+30 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )-31 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )+12 \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )\right )\right )}{672 d} \] Input:

Integrate[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]^(5/2),x]
 

Output:

((a*(1 + Cos[c + d*x]))^(5/2)*Csc[c/2 + (d*x)/2]^3*Sec[c/2 + (d*x)/2]^5*Sq 
rt[(1 - 2*Sin[c/2 + (d*x)/2]^2)^(-1)]*Sqrt[1 - 2*Sin[c/2 + (d*x)/2]^2]*(25 
6*Cos[(c + d*x)/2]^4*HypergeometricPFQ[{3/2, 2, 7/2}, {1, 9/2}, 2*Sin[c/2 
+ (d*x)/2]^2]*Sin[c/2 + (d*x)/2]^6 + 512*Hypergeometric2F1[3/2, 7/2, 9/2, 
2*Sin[c/2 + (d*x)/2]^2]*Sin[c/2 + (d*x)/2]^6*(2 - 3*Sin[c/2 + (d*x)/2]^2 + 
 Sin[c/2 + (d*x)/2]^4) + (21*Sqrt[2]*ArcSin[Sqrt[2]*Sqrt[Sin[c/2 + (d*x)/2 
]^2]]*(15 - 10*Sin[c/2 + (d*x)/2]^2 + 3*Sin[c/2 + (d*x)/2]^4))/Sqrt[Sin[c/ 
2 + (d*x)/2]^2] - 14*Sqrt[1 - 2*Sin[c/2 + (d*x)/2]^2]*(45 + 30*Sin[c/2 + ( 
d*x)/2]^2 - 31*Sin[c/2 + (d*x)/2]^4 + 12*Sin[c/2 + (d*x)/2]^6)))/(672*d)
 

Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.04, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4710, 3042, 3241, 27, 3042, 3459, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a)^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\cos (c+d x) a+a)^{5/2}}{\cos ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3241

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2}{3} a \int -\frac {\sqrt {\cos (c+d x) a+a} (3 \cos (c+d x) a+7 a)}{2 \cos ^{\frac {3}{2}}(c+d x)}dx\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} a \int \frac {\sqrt {\cos (c+d x) a+a} (3 \cos (c+d x) a+7 a)}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (3 \sin \left (c+d x+\frac {\pi }{2}\right ) a+7 a\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3459

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} a \left (3 a \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx+\frac {14 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} a \left (3 a \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {14 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3253

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} a \left (\frac {14 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {6 a \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 223

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a^2 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} a \left (\frac {6 a^{3/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {14 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )\right )\)

Input:

Int[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]^(5/2),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a^2*Sqrt[a + a*Cos[c + d*x]]*Sin 
[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (a*((6*a^(3/2)*ArcSin[(Sqrt[a]*Sin[c 
 + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (14*a^2*Sin[c + d*x])/(d*Sqrt[Cos[ 
c + d*x]]*Sqrt[a + a*Cos[c + d*x]])))/3)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3241
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b 
*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a* 
d))), x] + Simp[b^2/(d*(n + 1)*(b*c + a*d))   Int[(a + b*Sin[e + f*x])^(m - 
 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b* 
c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
 && GtQ[m, 1] && LtQ[n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || 
 (IntegerQ[m] && EqQ[c, 0]))
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [A] (verified)

Time = 2.82 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.95

\[\frac {2 \sqrt {a \left (\cos \left (d x +c \right )+1\right )}\, \sec \left (d x +c \right )^{\frac {5}{2}} \left (\cos \left (d x +c \right ) \left (8 \cos \left (d x +c \right )+1\right ) \sin \left (d x +c \right )+\arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (3 \cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}\right )\right ) a^{2}}{3 d \left (\cos \left (d x +c \right )+1\right )}\]

Input:

int((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^(5/2),x)
 

Output:

2/3/d*(a*(cos(d*x+c)+1))^(1/2)*sec(d*x+c)^(5/2)/(cos(d*x+c)+1)*(cos(d*x+c) 
*(8*cos(d*x+c)+1)*sin(d*x+c)+arctan(tan(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1)) 
^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(3*cos(d*x+c)^3+3*cos(d*x+c)^2)) 
*a^2
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.93 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {5}{2}}(c+d x) \, dx=-\frac {2 \, {\left (3 \, {\left (a^{2} \cos \left (d x + c\right )^{2} + a^{2} \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {{\left (8 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{3 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^(5/2),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

-2/3*(3*(a^2*cos(d*x + c)^2 + a^2*cos(d*x + c))*sqrt(a)*arctan(sqrt(a*cos( 
d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - (8*a^2*cos(d*x 
+ c) + a^2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*c 
os(d*x + c)^2 + d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {5}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(5/2)*sec(d*x+c)**(5/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1395 vs. \(2 (116) = 232\).

Time = 0.36 (sec) , antiderivative size = 1395, normalized size of antiderivative = 10.11 \[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {5}{2}}(c+d x) \, dx=\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^(5/2),x, algorithm="maxima")
 

Output:

1/6*(30*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) 
^(3/4)*a^(5/2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 
2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4) 
*((12*a^2*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 
 2*c) - 3*a^2*sin(2*d*x + 2*c) - 4*(3*a^2*cos(2*d*x + 2*c) + 4*a^2)*sin(3/ 
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(3/2*arctan2(sin(2*d*x 
+ 2*c), cos(2*d*x + 2*c) + 1)) + (12*a^2*sin(2*d*x + 2*c)*sin(3/2*arctan2( 
sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 3*a^2*cos(2*d*x + 2*c) - a^2 + 4*(3 
*a^2*cos(2*d*x + 2*c) + 4*a^2)*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
 + 2*c))))*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt( 
a) + 3*((a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x 
 + 2*c) + a^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2* 
d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)) 
)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arcta 
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2* 
c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos( 
2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c 
) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arc 
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 
2*c), cos(2*d*x + 2*c)))) + 1) - (a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*...
 

Giac [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {5}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^(5/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {5}{2}}(c+d x) \, dx=\int {\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2} \,d x \] Input:

int((1/cos(c + d*x))^(5/2)*(a + a*cos(c + d*x))^(5/2),x)
 

Output:

int((1/cos(c + d*x))^(5/2)*(a + a*cos(c + d*x))^(5/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int (a+a \cos (c+d x))^{5/2} \sec ^{\frac {5}{2}}(c+d x) \, dx=\sqrt {a}\, a^{2} \left (2 \left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}d x \right )+\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}d x +\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}d x \right ) \] Input:

int((a+a*cos(d*x+c))^(5/2)*sec(d*x+c)^(5/2),x)
 

Output:

sqrt(a)*a**2*(2*int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*cos(c + d*x) 
*sec(c + d*x)**2,x) + int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*cos(c 
+ d*x)**2*sec(c + d*x)**2,x) + int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 
1)*sec(c + d*x)**2,x))