\(\int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx\) [359]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 180 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=\frac {25 a^{5/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{8 d}+\frac {13 a^3 \sin (c+d x)}{12 d \sqrt {a+a \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}+\frac {a^2 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {25 a^3 \sin (c+d x)}{8 d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \] Output:

25/8*a^(5/2)*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))*cos(d*x+c)^ 
(1/2)*sec(d*x+c)^(1/2)/d+13/12*a^3*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)/sec 
(d*x+c)^(3/2)+1/3*a^2*(a+a*cos(d*x+c))^(1/2)*sin(d*x+c)/d/sec(d*x+c)^(3/2) 
+25/8*a^3*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 3.26 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.12 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=\frac {\sqrt {\cos (c+d x)} (a (1+\cos (c+d x)))^{5/2} \sec ^4\left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (7 (89+28 \cos (c+d x)+3 \cos (2 (c+d x))) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {1}{2},\frac {7}{2},2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right )-8 (3+\cos (c+d x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{2},\frac {9}{2},2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^2(c+d x)-2 \csc ^2\left (\frac {1}{2} (c+d x)\right ) \, _3F_2\left (\frac {1}{2},\frac {3}{2},2;1,\frac {9}{2};2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^4(c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )}{420 d} \] Input:

Integrate[(a + a*Cos[c + d*x])^(5/2)/Sqrt[Sec[c + d*x]],x]
 

Output:

(Sqrt[Cos[c + d*x]]*(a*(1 + Cos[c + d*x]))^(5/2)*Sec[(c + d*x)/2]^4*Sqrt[S 
ec[c + d*x]]*(7*(89 + 28*Cos[c + d*x] + 3*Cos[2*(c + d*x)])*Hypergeometric 
2F1[-1/2, 1/2, 7/2, 2*Sin[(c + d*x)/2]^2] - 8*(3 + Cos[c + d*x])*Hypergeom 
etric2F1[1/2, 3/2, 9/2, 2*Sin[(c + d*x)/2]^2]*Sin[c + d*x]^2 - 2*Csc[(c + 
d*x)/2]^2*HypergeometricPFQ[{1/2, 3/2, 2}, {1, 9/2}, 2*Sin[(c + d*x)/2]^2] 
*Sin[c + d*x]^4)*Tan[(c + d*x)/2])/(420*d)
 

Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.03, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 4710, 3042, 3242, 27, 3042, 3460, 3042, 3249, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^{5/2}}{\sqrt {\sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)} (\cos (c+d x) a+a)^{5/2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2}dx\)

\(\Big \downarrow \) 3242

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} \int \frac {1}{2} \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a} \left (13 \cos (c+d x) a^2+9 a^2\right )dx+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{6} \int \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a} \left (13 \cos (c+d x) a^2+9 a^2\right )dx+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{6} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (13 \sin \left (c+d x+\frac {\pi }{2}\right ) a^2+9 a^2\right )dx+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 3460

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{6} \left (\frac {75}{4} a^2 \int \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}dx+\frac {13 a^3 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{6} \left (\frac {75}{4} a^2 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {13 a^3 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 3249

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{6} \left (\frac {75}{4} a^2 \left (\frac {1}{2} \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {13 a^3 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{6} \left (\frac {75}{4} a^2 \left (\frac {1}{2} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {13 a^3 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 3253

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{6} \left (\frac {75}{4} a^2 \left (\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {13 a^3 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )\)

\(\Big \downarrow \) 223

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}+\frac {1}{6} \left (\frac {13 a^3 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}+\frac {75}{4} a^2 \left (\frac {\sqrt {a} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )\right )\right )\)

Input:

Int[(a + a*Cos[c + d*x])^(5/2)/Sqrt[Sec[c + d*x]],x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((a^2*Cos[c + d*x]^(3/2)*Sqrt[a + a* 
Cos[c + d*x]]*Sin[c + d*x])/(3*d) + ((13*a^3*Cos[c + d*x]^(3/2)*Sin[c + d* 
x])/(2*d*Sqrt[a + a*Cos[c + d*x]]) + (75*a^2*((Sqrt[a]*ArcSin[(Sqrt[a]*Sin 
[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (a*Sqrt[Cos[c + d*x]]*Sin[c + d* 
x])/(d*Sqrt[a + a*Cos[c + d*x]])))/4)/6)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3242
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x 
])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Simp[1/(d*(m 
+ n))   Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c* 
(m - 2) + b^2*d*(n + 1) + a^2*d*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 
 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c 
 - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[ 
n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[ 
c, 0]))
 

rule 3249
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x]) 
^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[2*n*((b*c + a*d)/(b*( 
2*n + 1)))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], 
 x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 
0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [A] (verified)

Time = 10.59 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.78

method result size
default \(\frac {\left (75 \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )+\left (8 \cos \left (d x +c \right )^{2}+34 \cos \left (d x +c \right )+75\right ) \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {2}\, a^{2}}{24 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {\sec \left (d x +c \right )}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\) \(140\)

Input:

int((a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/24/d*(75*arctan(tan(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+(8*cos(d*x 
+c)^2+34*cos(d*x+c)+75)*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*(a*c 
os(1/2*d*x+1/2*c)^2)^(1/2)/(cos(d*x+c)+1)/sec(d*x+c)^(1/2)/(cos(d*x+c)/(co 
s(d*x+c)+1))^(1/2)*2^(1/2)*a^2
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.74 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=-\frac {75 \, {\left (a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {{\left (8 \, a^{2} \cos \left (d x + c\right )^{3} + 34 \, a^{2} \cos \left (d x + c\right )^{2} + 75 \, a^{2} \cos \left (d x + c\right )\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{24 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")
 

Output:

-1/24*(75*(a^2*cos(d*x + c) + a^2)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a) 
*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - (8*a^2*cos(d*x + c)^3 + 34*a 
^2*cos(d*x + c)^2 + 75*a^2*cos(d*x + c))*sqrt(a*cos(d*x + c) + a)*sin(d*x 
+ c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(5/2)/sec(d*x+c)**(1/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1964 vs. \(2 (150) = 300\).

Time = 0.40 (sec) , antiderivative size = 1964, normalized size of antiderivative = 10.91 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")
 

Output:

1/96*(4*(a^2*cos(3/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 
 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(3* 
d*x + 3*c) - (a^2*cos(3*d*x + 3*c) - a^2)*sin(3/2*arctan2(sin(2/3*arctan2( 
sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), co 
s(3*d*x + 3*c))) + 1)))*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c 
)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3 
*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(3/4)*sqrt(a) + 30*(cos 
(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin( 
3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), c 
os(3*d*x + 3*c))) + 1)^(1/4)*((a^2*sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3 
*d*x + 3*c))) + 5*a^2*sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) 
)*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), co 
s(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - (a^2*cos(2/3*ar 
ctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 3*a^2*cos(1/3*arctan2(sin(3*d 
*x + 3*c), cos(3*d*x + 3*c))) - 4*a^2)*sin(1/2*arctan2(sin(2/3*arctan2(sin 
(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3 
*d*x + 3*c))) + 1)))*sqrt(a) + 75*(a^2*arctan2(-(cos(2/3*arctan2(sin(3*d*x 
 + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d* 
x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1) 
^(1/4)*(cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3...
 

Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="giac")
 

Output:

integrate((a*cos(d*x + c) + a)^(5/2)/sqrt(sec(d*x + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((a + a*cos(c + d*x))^(5/2)/(1/cos(c + d*x))^(1/2),x)
 

Output:

int((a + a*cos(c + d*x))^(5/2)/(1/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\sec (c+d x)}} \, dx=\sqrt {a}\, a^{2} \left (2 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )}{\sec \left (d x +c \right )}d x \right )+\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2}}{\sec \left (d x +c \right )}d x +\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}}{\sec \left (d x +c \right )}d x \right ) \] Input:

int((a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x)
 

Output:

sqrt(a)*a**2*(2*int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*cos(c + d*x 
))/sec(c + d*x),x) + int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*cos(c 
+ d*x)**2)/sec(c + d*x),x) + int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1 
))/sec(c + d*x),x))