\(\int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx\) [377]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 174 \[ \int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{a^{3/2} d}-\frac {5 \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \] Output:

2*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d 
*x+c)^(1/2)/a^(3/2)/d-5/4*arctan(1/2*a^(1/2)*sin(d*x+c)*2^(1/2)/cos(d*x+c) 
^(1/2)/(a+a*cos(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/a 
^(3/2)/d-1/2*sin(d*x+c)/d/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 7.04 (sec) , antiderivative size = 316, normalized size of antiderivative = 1.82 \[ \int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {i \sqrt {2} e^{-\frac {1}{2} i (c+d x)} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \left (2 \text {arcsinh}\left (e^{i (c+d x)}\right )+\frac {5 \text {arctanh}\left (\frac {1-e^{i (c+d x)}}{\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}}\right )}{\sqrt {2}}-2 \text {arctanh}\left (\sqrt {1+e^{2 i (c+d x)}}\right )\right ) \cos ^3\left (\frac {c}{2}+\frac {d x}{2}\right )}{d (a (1+\cos (c+d x)))^{3/2}}+\frac {\cos ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\sec (c+d x)} \left (-\frac {2 \cos \left (\frac {d x}{2}\right ) \sin \left (\frac {c}{2}\right )}{d}-\frac {2 \cos \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right )}{d}+\frac {\sec \left (\frac {c}{2}\right ) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{d}+\frac {\sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{d}\right )}{(a (1+\cos (c+d x)))^{3/2}} \] Input:

Integrate[1/((a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(3/2)),x]
 

Output:

((-I)*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^( 
(2*I)*(c + d*x))]*(2*ArcSinh[E^(I*(c + d*x))] + (5*ArcTanh[(1 - E^(I*(c + 
d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])])/Sqrt[2] - 2*ArcTanh[Sqrt[ 
1 + E^((2*I)*(c + d*x))]])*Cos[c/2 + (d*x)/2]^3)/(d*E^((I/2)*(c + d*x))*(a 
*(1 + Cos[c + d*x]))^(3/2)) + (Cos[c/2 + (d*x)/2]^3*Sqrt[Sec[c + d*x]]*((- 
2*Cos[(d*x)/2]*Sin[c/2])/d - (2*Cos[c/2]*Sin[(d*x)/2])/d + (Sec[c/2]*Sec[c 
/2 + (d*x)/2]^2*Sin[(d*x)/2])/d + (Sec[c/2 + (d*x)/2]*Tan[c/2])/d))/(a*(1 
+ Cos[c + d*x]))^(3/2)
 

Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.93, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 4710, 3042, 3244, 27, 3042, 3461, 3042, 3253, 223, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(\cos (c+d x) a+a)^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 3244

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {\int \frac {a-4 a \cos (c+d x)}{2 \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {\int \frac {a-4 a \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {\int \frac {a-4 a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3461

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {5 a \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx-4 \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx}{4 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {5 a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-4 \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{4 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3253

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {5 a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {8 \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}}{4 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 223

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {5 a \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {8 \sqrt {a} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3261

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {-\frac {10 a^2 \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {8 \sqrt {a} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {\frac {5 \sqrt {2} \sqrt {a} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {8 \sqrt {a} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {\sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\right )\)

Input:

Int[1/((a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^(3/2)),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/4*((-8*Sqrt[a]*ArcSin[(Sqrt[a]*S 
in[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (5*Sqrt[2]*Sqrt[a]*ArcTan[(Sqr 
t[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]) 
/d)/a^2 - (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2 
)))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3244
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e 
+ f*x])^m*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Simp[1/(a*b* 
(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)* 
Simp[b*(c^2*(m + 1) + d^2*(n - 1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) 
 + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && 
 NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] 
&& GtQ[n, 1] && (IntegersQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3461
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Sim 
p[(A*b - a*B)/b   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]) 
, x], x] + Simp[B/b   Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]] 
, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [A] (warning: unable to verify)

Time = 4.30 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.14

method result size
default \(\frac {\sqrt {\sec \left (d x +c \right )}\, \left (\cos \left (d x +c \right )+1\right )^{2} \left (\csc \left (d x +c \right )^{2} \left (1-\cos \left (d x +c \right )\right )^{2}+1\right )^{2} \left (\csc \left (d x +c \right )^{2} \left (1-\cos \left (d x +c \right )\right )^{2}-1\right ) \sqrt {2}\, \sqrt {a \left (\cos \left (d x +c \right )+1\right )}\, \left (-4 \sqrt {2}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )+\sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )-5 \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right )}{32 d \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a^{2}}\) \(198\)

Input:

int(1/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/32/d*sec(d*x+c)^(1/2)*(cos(d*x+c)+1)^2/(cos(d*x+c)/(cos(d*x+c)+1))^(1/2) 
*(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^2*(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)*2^( 
1/2)*(a*(cos(d*x+c)+1))^(1/2)*(-4*2^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(c 
os(d*x+c)+1))^(1/2))+2^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(csc(d*x+c) 
-cot(d*x+c))-5*arcsin(cot(d*x+c)-csc(d*x+c)))/a^2
                                                                                    
                                                                                    
 

Fricas [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.05 \[ \int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {5 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 8 \, {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \] Input:

integrate(1/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="fricas")
 

Output:

1/4*(5*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(2 
)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - 8* 
(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + 
 a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - 2*sqrt(a*cos(d*x + c) + a 
)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x 
 + c) + a^2*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate(1/(a+a*cos(d*x+c))**(3/2)/sec(d*x+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="maxima")
 

Output:

integrate(1/((a*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(3/2)), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate(1/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {1}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int(1/((1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))^(3/2)),x)
 

Output:

int(1/((1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {1}{(a+a \cos (c+d x))^{3/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}}{\cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}+2 \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}+\sec \left (d x +c \right )^{2}}d x \right )}{a^{2}} \] Input:

int(1/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x)
 

Output:

(sqrt(a)*int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1))/(cos(c + d*x)**2* 
sec(c + d*x)**2 + 2*cos(c + d*x)*sec(c + d*x)**2 + sec(c + d*x)**2),x))/a* 
*2