\(\int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx\) [380]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 197 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=-\frac {75 \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{16 \sqrt {2} a^{5/2} d}-\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {13 \sqrt {\sec (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {49 \sqrt {\sec (c+d x)} \sin (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}} \] Output:

-75/32*arctan(1/2*a^(1/2)*sin(d*x+c)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x 
+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/a^(5/2)/d-1/4*sec(d* 
x+c)^(1/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(5/2)-13/16*sec(d*x+c)^(1/2)*sin( 
d*x+c)/a/d/(a+a*cos(d*x+c))^(3/2)+49/16*sec(d*x+c)^(1/2)*sin(d*x+c)/a^2/d/ 
(a+a*cos(d*x+c))^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 6.89 (sec) , antiderivative size = 508, normalized size of antiderivative = 2.58 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\frac {2 \cos ^5\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec ^4\left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {1}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right )^{3/2} \left (\frac {8 \cos ^6\left (\frac {1}{2} (c+d x)\right ) \, _4F_3\left (2,2,2,\frac {5}{2};1,1,\frac {11}{2};\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{315 \left (-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )}+\frac {1}{120} \csc ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^2 \sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \left (-15 \text {arctanh}\left (\sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right ) \left (-343+1465 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )-2021 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )+824 \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )\right )+\sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \left (-5145+33980 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )-87764 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )+109737 \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )-66122 \sin ^8\left (\frac {c}{2}+\frac {d x}{2}\right )+15344 \sin ^{10}\left (\frac {c}{2}+\frac {d x}{2}\right )\right )\right )\right )}{d (a (1+\cos (c+d x)))^{5/2}} \] Input:

Integrate[Sec[c + d*x]^(3/2)/(a + a*Cos[c + d*x])^(5/2),x]
 

Output:

(2*Cos[c/2 + (d*x)/2]^5*Sec[(c + d*x)/2]^4*Sin[c/2 + (d*x)/2]*((1 - 2*Sin[ 
c/2 + (d*x)/2]^2)^(-1))^(3/2)*((8*Cos[(c + d*x)/2]^6*HypergeometricPFQ[{2, 
 2, 2, 5/2}, {1, 1, 11/2}, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2] 
^2)]*Sin[c/2 + (d*x)/2]^2)/(315*(-1 + 2*Sin[c/2 + (d*x)/2]^2)) + (Csc[c/2 
+ (d*x)/2]^8*(1 - 2*Sin[c/2 + (d*x)/2]^2)^2*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 
+ 2*Sin[c/2 + (d*x)/2]^2)]*(-15*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2* 
Sin[c/2 + (d*x)/2]^2)]]*Cos[(c + d*x)/2]^4*(-343 + 1465*Sin[c/2 + (d*x)/2] 
^2 - 2021*Sin[c/2 + (d*x)/2]^4 + 824*Sin[c/2 + (d*x)/2]^6) + Sqrt[Sin[c/2 
+ (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*(-5145 + 33980*Sin[c/2 + (d*x) 
/2]^2 - 87764*Sin[c/2 + (d*x)/2]^4 + 109737*Sin[c/2 + (d*x)/2]^6 - 66122*S 
in[c/2 + (d*x)/2]^8 + 15344*Sin[c/2 + (d*x)/2]^10)))/120))/(d*(a*(1 + Cos[ 
c + d*x]))^(5/2))
 

Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.06, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.560, Rules used = {3042, 4710, 3042, 3245, 27, 3042, 3457, 27, 3042, 3463, 27, 3042, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a \cos (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 3245

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {9 a-4 a \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)^{3/2}}dx}{4 a^2}-\frac {\sin (c+d x)}{4 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {9 a-4 a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x)}{4 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {9 a-4 a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x)}{4 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 3457

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {49 a^2-26 a^2 \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}-\frac {13 a \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {49 a^2-26 a^2 \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {13 a \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {49 a^2-26 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {13 a \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 3463

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {2 \int -\frac {75 a^3}{2 \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {98 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {13 a \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {98 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-75 a^2 \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {13 a \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {98 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-75 a^2 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {13 a \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 3261

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {150 a^3 \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}+\frac {98 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {13 a \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{5/2}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {98 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {75 \sqrt {2} a^{3/2} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {13 a \sin (c+d x)}{2 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x)}{4 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{5/2}}\right )\)

Input:

Int[Sec[c + d*x]^(3/2)/(a + a*Cos[c + d*x])^(5/2),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/4*Sin[c + d*x]/(d*Sqrt[Cos[c + d 
*x]]*(a + a*Cos[c + d*x])^(5/2)) + ((-13*a*Sin[c + d*x])/(2*d*Sqrt[Cos[c + 
 d*x]]*(a + a*Cos[c + d*x])^(3/2)) + ((-75*Sqrt[2]*a^(3/2)*ArcTan[(Sqrt[a] 
*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/d + 
 (98*a^2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]))/(4 
*a^2))/(8*a^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3245
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/( 
a*(2*m + 1)*(b*c - a*d))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + 
f*x])^n*Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ 
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (Intege 
rsQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3463
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
+ 1)/(f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*(n + 1)*(c^2 - d^2))   Int[(a 
 + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 
1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && Eq 
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m 
 + 1/2, 0])
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [A] (verified)

Time = 7.16 (sec) , antiderivative size = 165, normalized size of antiderivative = 0.84

method result size
default \(\frac {\cos \left (d x +c \right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\sin \left (d x +c \right ) \left (49 \cos \left (d x +c \right )^{2}+85 \cos \left (d x +c \right )+32\right ) \sqrt {2}+\left (75 \cos \left (d x +c \right )^{3}+225 \cos \left (d x +c \right )^{2}+225 \cos \left (d x +c \right )+75\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}{16 d \left (\cos \left (d x +c \right )+1\right ) \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) a^{3}}\) \(165\)

Input:

int(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/16/d*cos(d*x+c)*(a*cos(1/2*d*x+1/2*c)^2)^(1/2)*(sin(d*x+c)*(49*cos(d*x+c 
)^2+85*cos(d*x+c)+32)*2^(1/2)+(75*cos(d*x+c)^3+225*cos(d*x+c)^2+225*cos(d* 
x+c)+75)*arcsin(cot(d*x+c)-csc(d*x+c))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2))* 
sec(d*x+c)^(3/2)/(cos(d*x+c)+1)/(cos(d*x+c)^2+2*cos(d*x+c)+1)/a^3
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.86 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\frac {75 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) + \frac {2 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (49 \, \cos \left (d x + c\right )^{2} + 85 \, \cos \left (d x + c\right ) + 32\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \] Input:

integrate(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

1/32*(75*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)* 
sqrt(a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a 
)*sin(d*x + c))) + 2*sqrt(a*cos(d*x + c) + a)*(49*cos(d*x + c)^2 + 85*cos( 
d*x + c) + 32)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 3* 
a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)**(3/2)/(a+a*cos(d*x+c))**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

integrate(sec(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^(5/2), x)
 

Giac [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

integrate(sec(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \] Input:

int((1/cos(c + d*x))^(3/2)/(a + a*cos(c + d*x))^(5/2),x)
                                                                                    
                                                                                    
 

Output:

int((1/cos(c + d*x))^(3/2)/(a + a*cos(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1}d x \right )}{a^{3}} \] Input:

int(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(5/2),x)
 

Output:

(sqrt(a)*int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*sec(c + d*x))/(cos 
(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d*x) + 1),x))/a**3