\(\int \frac {\cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx\) [462]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 108 \[ \int \frac {\cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {x}{b^2}-\frac {2 a \left (a^2-2 b^2\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{(a-b)^{3/2} b^2 (a+b)^{3/2} d}-\frac {a^2 \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))} \] Output:

x/b^2-2*a*(a^2-2*b^2)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/( 
a-b)^(3/2)/b^2/(a+b)^(3/2)/d-a^2*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))
 

Mathematica [A] (verified)

Time = 0.64 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.95 \[ \int \frac {\cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {c+d x-\frac {2 a \left (a^2-2 b^2\right ) \text {arctanh}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\left (-a^2+b^2\right )^{3/2}}-\frac {a^2 b \sin (c+d x)}{(a-b) (a+b) (a+b \cos (c+d x))}}{b^2 d} \] Input:

Integrate[Cos[c + d*x]^2/(a + b*Cos[c + d*x])^2,x]
 

Output:

(c + d*x - (2*a*(a^2 - 2*b^2)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 
 + b^2]])/(-a^2 + b^2)^(3/2) - (a^2*b*Sin[c + d*x])/((a - b)*(a + b)*(a + 
b*Cos[c + d*x])))/(b^2*d)
 

Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.23, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 3269, 3042, 3214, 3042, 3138, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^2}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3269

\(\displaystyle \frac {\int \frac {a b+\left (a^2-b^2\right ) \cos (c+d x)}{a+b \cos (c+d x)}dx}{b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a b+\left (a^2-b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3214

\(\displaystyle \frac {\frac {x \left (a^2-b^2\right )}{b}-\frac {a \left (a^2-2 b^2\right ) \int \frac {1}{a+b \cos (c+d x)}dx}{b}}{b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {x \left (a^2-b^2\right )}{b}-\frac {a \left (a^2-2 b^2\right ) \int \frac {1}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3138

\(\displaystyle \frac {\frac {x \left (a^2-b^2\right )}{b}-\frac {2 a \left (a^2-2 b^2\right ) \int \frac {1}{(a-b) \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}d\tan \left (\frac {1}{2} (c+d x)\right )}{b d}}{b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {x \left (a^2-b^2\right )}{b}-\frac {2 a \left (a^2-2 b^2\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{b d \sqrt {a-b} \sqrt {a+b}}}{b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

Input:

Int[Cos[c + d*x]^2/(a + b*Cos[c + d*x])^2,x]
 

Output:

(((a^2 - b^2)*x)/b - (2*a*(a^2 - 2*b^2)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/ 
2])/Sqrt[a + b]])/(Sqrt[a - b]*b*Sqrt[a + b]*d))/(b*(a^2 - b^2)) - (a^2*Si 
n[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3269
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^2, x_Symbol] :> Simp[(-(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*Cos[e 
+ f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))), x] - Simp[ 
1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1) 
*(2*b*c*d - a*(c^2 + d^2)) + (a^2*d^2 - 2*a*b*c*d*(m + 2) + b^2*(d^2*(m + 1 
) + c^2*(m + 2)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] 
&& NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
 
Maple [A] (verified)

Time = 0.98 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.32

method result size
derivativedivides \(\frac {-\frac {2 a \left (\frac {a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )}+\frac {\left (a^{2}-2 b^{2}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{b^{2}}+\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{2}}}{d}\) \(143\)
default \(\frac {-\frac {2 a \left (\frac {a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )}+\frac {\left (a^{2}-2 b^{2}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{b^{2}}+\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{2}}}{d}\) \(143\)
risch \(\frac {x}{b^{2}}-\frac {2 i a^{2} \left (a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )}{b^{2} \left (a^{2}-b^{2}\right ) d \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+2 a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )}-\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,b^{2}}+\frac {2 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,b^{2}}-\frac {2 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}\) \(407\)

Input:

int(cos(d*x+c)^2/(a+cos(d*x+c)*b)^2,x,method=_RETURNVERBOSE)
 

Output:

1/d*(-2*a/b^2*(a*b/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c)^2*a-ta 
n(1/2*d*x+1/2*c)^2*b+a+b)+(a^2-2*b^2)/(a-b)/(a+b)/((a-b)*(a+b))^(1/2)*arct 
an((a-b)*tan(1/2*d*x+1/2*c)/((a-b)*(a+b))^(1/2)))+2/b^2*arctan(tan(1/2*d*x 
+1/2*c)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 199 vs. \(2 (99) = 198\).

Time = 0.11 (sec) , antiderivative size = 470, normalized size of antiderivative = 4.35 \[ \int \frac {\cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\left [\frac {2 \, {\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d x \cos \left (d x + c\right ) + 2 \, {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d x - {\left (a^{4} - 2 \, a^{2} b^{2} + {\left (a^{3} b - 2 \, a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - 2 \, {\left (a^{4} b - a^{2} b^{3}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{4} b^{3} - 2 \, a^{2} b^{5} + b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{5} b^{2} - 2 \, a^{3} b^{4} + a b^{6}\right )} d\right )}}, \frac {{\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d x \cos \left (d x + c\right ) + {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d x - {\left (a^{4} - 2 \, a^{2} b^{2} + {\left (a^{3} b - 2 \, a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) - {\left (a^{4} b - a^{2} b^{3}\right )} \sin \left (d x + c\right )}{{\left (a^{4} b^{3} - 2 \, a^{2} b^{5} + b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{5} b^{2} - 2 \, a^{3} b^{4} + a b^{6}\right )} d}\right ] \] Input:

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^2,x, algorithm="fricas")
 

Output:

[1/2*(2*(a^4*b - 2*a^2*b^3 + b^5)*d*x*cos(d*x + c) + 2*(a^5 - 2*a^3*b^2 + 
a*b^4)*d*x - (a^4 - 2*a^2*b^2 + (a^3*b - 2*a*b^3)*cos(d*x + c))*sqrt(-a^2 
+ b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-a^ 
2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c 
)^2 + 2*a*b*cos(d*x + c) + a^2)) - 2*(a^4*b - a^2*b^3)*sin(d*x + c))/((a^4 
*b^3 - 2*a^2*b^5 + b^7)*d*cos(d*x + c) + (a^5*b^2 - 2*a^3*b^4 + a*b^6)*d), 
 ((a^4*b - 2*a^2*b^3 + b^5)*d*x*cos(d*x + c) + (a^5 - 2*a^3*b^2 + a*b^4)*d 
*x - (a^4 - 2*a^2*b^2 + (a^3*b - 2*a*b^3)*cos(d*x + c))*sqrt(a^2 - b^2)*ar 
ctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) - (a^4*b - a^2* 
b^3)*sin(d*x + c))/((a^4*b^3 - 2*a^2*b^5 + b^7)*d*cos(d*x + c) + (a^5*b^2 
- 2*a^3*b^4 + a*b^6)*d)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**2/(a+b*cos(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^2,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 

Giac [A] (verification not implemented)

Time = 0.60 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.62 \[ \int \frac {\cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=-\frac {\frac {2 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a^{2} b - b^{3}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b\right )}} - \frac {2 \, {\left (a^{3} - 2 \, a b^{2}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{2} b^{2} - b^{4}\right )} \sqrt {a^{2} - b^{2}}} - \frac {d x + c}{b^{2}}}{d} \] Input:

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^2,x, algorithm="giac")
 

Output:

-(2*a^2*tan(1/2*d*x + 1/2*c)/((a^2*b - b^3)*(a*tan(1/2*d*x + 1/2*c)^2 - b* 
tan(1/2*d*x + 1/2*c)^2 + a + b)) - 2*(a^3 - 2*a*b^2)*(pi*floor(1/2*(d*x + 
c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2 
*d*x + 1/2*c))/sqrt(a^2 - b^2)))/((a^2*b^2 - b^4)*sqrt(a^2 - b^2)) - (d*x 
+ c)/b^2)/d
 

Mupad [B] (verification not implemented)

Time = 47.77 (sec) , antiderivative size = 2872, normalized size of antiderivative = 26.59 \[ \int \frac {\cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Too large to display} \] Input:

int(cos(c + d*x)^2/(a + b*cos(c + d*x))^2,x)
 

Output:

(2*atan((((((32*(2*a*b^8 - b^9 + a^2*b^7 - 3*a^3*b^6 + a^5*b^4))/(a*b^5 + 
b^6 - a^2*b^4 - a^3*b^3) - (tan(c/2 + (d*x)/2)*(2*a*b^9 - 2*a^2*b^8 - 4*a^ 
3*b^7 + 4*a^4*b^6 + 2*a^5*b^5 - 2*a^6*b^4)*32i)/(b^2*(a*b^4 + b^5 - a^2*b^ 
3 - a^3*b^2)))*1i)/b^2 + (32*tan(c/2 + (d*x)/2)*(2*a^6 - 2*a^5*b - 2*a*b^5 
 + b^6 + 3*a^2*b^4 + 4*a^3*b^3 - 5*a^4*b^2))/(a*b^4 + b^5 - a^2*b^3 - a^3* 
b^2))/b^2 - ((((32*(2*a*b^8 - b^9 + a^2*b^7 - 3*a^3*b^6 + a^5*b^4))/(a*b^5 
 + b^6 - a^2*b^4 - a^3*b^3) + (tan(c/2 + (d*x)/2)*(2*a*b^9 - 2*a^2*b^8 - 4 
*a^3*b^7 + 4*a^4*b^6 + 2*a^5*b^5 - 2*a^6*b^4)*32i)/(b^2*(a*b^4 + b^5 - a^2 
*b^3 - a^3*b^2)))*1i)/b^2 - (32*tan(c/2 + (d*x)/2)*(2*a^6 - 2*a^5*b - 2*a* 
b^5 + b^6 + 3*a^2*b^4 + 4*a^3*b^3 - 5*a^4*b^2))/(a*b^4 + b^5 - a^2*b^3 - a 
^3*b^2))/b^2)/((64*(2*a*b^4 - a^4*b + a^5 + 2*a^2*b^3 - 3*a^3*b^2))/(a*b^5 
 + b^6 - a^2*b^4 - a^3*b^3) + (((((32*(2*a*b^8 - b^9 + a^2*b^7 - 3*a^3*b^6 
 + a^5*b^4))/(a*b^5 + b^6 - a^2*b^4 - a^3*b^3) - (tan(c/2 + (d*x)/2)*(2*a* 
b^9 - 2*a^2*b^8 - 4*a^3*b^7 + 4*a^4*b^6 + 2*a^5*b^5 - 2*a^6*b^4)*32i)/(b^2 
*(a*b^4 + b^5 - a^2*b^3 - a^3*b^2)))*1i)/b^2 + (32*tan(c/2 + (d*x)/2)*(2*a 
^6 - 2*a^5*b - 2*a*b^5 + b^6 + 3*a^2*b^4 + 4*a^3*b^3 - 5*a^4*b^2))/(a*b^4 
+ b^5 - a^2*b^3 - a^3*b^2))*1i)/b^2 + (((((32*(2*a*b^8 - b^9 + a^2*b^7 - 3 
*a^3*b^6 + a^5*b^4))/(a*b^5 + b^6 - a^2*b^4 - a^3*b^3) + (tan(c/2 + (d*x)/ 
2)*(2*a*b^9 - 2*a^2*b^8 - 4*a^3*b^7 + 4*a^4*b^6 + 2*a^5*b^5 - 2*a^6*b^4)*3 
2i)/(b^2*(a*b^4 + b^5 - a^2*b^3 - a^3*b^2)))*1i)/b^2 - (32*tan(c/2 + (d...
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 380, normalized size of antiderivative = 3.52 \[ \int \frac {\cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {-2 \sqrt {a^{2}-b^{2}}\, \mathit {atan} \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b}{\sqrt {a^{2}-b^{2}}}\right ) \cos \left (d x +c \right ) a^{3} b +4 \sqrt {a^{2}-b^{2}}\, \mathit {atan} \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b}{\sqrt {a^{2}-b^{2}}}\right ) \cos \left (d x +c \right ) a \,b^{3}-2 \sqrt {a^{2}-b^{2}}\, \mathit {atan} \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b}{\sqrt {a^{2}-b^{2}}}\right ) a^{4}+4 \sqrt {a^{2}-b^{2}}\, \mathit {atan} \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b}{\sqrt {a^{2}-b^{2}}}\right ) a^{2} b^{2}+\cos \left (d x +c \right ) a^{4} b d x -2 \cos \left (d x +c \right ) a^{2} b^{3} d x +\cos \left (d x +c \right ) b^{5} d x -\sin \left (d x +c \right ) a^{4} b +\sin \left (d x +c \right ) a^{2} b^{3}+a^{5} d x -2 a^{3} b^{2} d x +a \,b^{4} d x}{b^{2} d \left (\cos \left (d x +c \right ) a^{4} b -2 \cos \left (d x +c \right ) a^{2} b^{3}+\cos \left (d x +c \right ) b^{5}+a^{5}-2 a^{3} b^{2}+a \,b^{4}\right )} \] Input:

int(cos(d*x+c)^2/(a+b*cos(d*x+c))^2,x)
 

Output:

( - 2*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqr 
t(a**2 - b**2))*cos(c + d*x)*a**3*b + 4*sqrt(a**2 - b**2)*atan((tan((c + d 
*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 - b**2))*cos(c + d*x)*a*b**3 - 2* 
sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 
 - b**2))*a**4 + 4*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d 
*x)/2)*b)/sqrt(a**2 - b**2))*a**2*b**2 + cos(c + d*x)*a**4*b*d*x - 2*cos(c 
 + d*x)*a**2*b**3*d*x + cos(c + d*x)*b**5*d*x - sin(c + d*x)*a**4*b + sin( 
c + d*x)*a**2*b**3 + a**5*d*x - 2*a**3*b**2*d*x + a*b**4*d*x)/(b**2*d*(cos 
(c + d*x)*a**4*b - 2*cos(c + d*x)*a**2*b**3 + cos(c + d*x)*b**5 + a**5 - 2 
*a**3*b**2 + a*b**4))