\(\int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx\) [475]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 182 \[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx=-\frac {b \left (6 a^4-5 a^2 b^2+2 b^4\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^3 (a-b)^{5/2} (a+b)^{5/2} d}+\frac {\text {arctanh}(\sin (c+d x))}{a^3 d}+\frac {b^2 \sin (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac {b^2 \left (5 a^2-2 b^2\right ) \sin (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))} \] Output:

-b*(6*a^4-5*a^2*b^2+2*b^4)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/ 
2))/a^3/(a-b)^(5/2)/(a+b)^(5/2)/d+arctanh(sin(d*x+c))/a^3/d+1/2*b^2*sin(d* 
x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))^2+1/2*b^2*(5*a^2-2*b^2)*sin(d*x+c)/a^2 
/(a^2-b^2)^2/d/(a+b*cos(d*x+c))
 

Mathematica [A] (verified)

Time = 1.58 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.05 \[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx=\frac {\frac {2 b \left (6 a^4-5 a^2 b^2+2 b^4\right ) \text {arctanh}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\left (-a^2+b^2\right )^{5/2}}-2 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {a b^2 \left (6 a^3-3 a b^2+b \left (5 a^2-2 b^2\right ) \cos (c+d x)\right ) \sin (c+d x)}{(a-b)^2 (a+b)^2 (a+b \cos (c+d x))^2}}{2 a^3 d} \] Input:

Integrate[Sec[c + d*x]/(a + b*Cos[c + d*x])^3,x]
 

Output:

((2*b*(6*a^4 - 5*a^2*b^2 + 2*b^4)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[ 
-a^2 + b^2]])/(-a^2 + b^2)^(5/2) - 2*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/ 
2]] + 2*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + (a*b^2*(6*a^3 - 3*a*b^2 
 + b*(5*a^2 - 2*b^2)*Cos[c + d*x])*Sin[c + d*x])/((a - b)^2*(a + b)^2*(a + 
 b*Cos[c + d*x])^2))/(2*a^3*d)
 

Rubi [A] (verified)

Time = 1.06 (sec) , antiderivative size = 226, normalized size of antiderivative = 1.24, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.526, Rules used = {3042, 3281, 3042, 3534, 3042, 3480, 3042, 3138, 218, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^3}dx\)

\(\Big \downarrow \) 3281

\(\displaystyle \frac {\int \frac {\left (b^2 \cos ^2(c+d x)-2 a b \cos (c+d x)+2 \left (a^2-b^2\right )\right ) \sec (c+d x)}{(a+b \cos (c+d x))^2}dx}{2 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2-2 a b \sin \left (c+d x+\frac {\pi }{2}\right )+2 \left (a^2-b^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx}{2 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {\frac {\int \frac {\left (2 \left (a^2-b^2\right )^2-a b \left (4 a^2-b^2\right ) \cos (c+d x)\right ) \sec (c+d x)}{a+b \cos (c+d x)}dx}{a \left (a^2-b^2\right )}+\frac {b^2 \left (5 a^2-2 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {2 \left (a^2-b^2\right )^2-a b \left (4 a^2-b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a \left (a^2-b^2\right )}+\frac {b^2 \left (5 a^2-2 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3480

\(\displaystyle \frac {\frac {\frac {2 \left (a^2-b^2\right )^2 \int \sec (c+d x)dx}{a}-\frac {b \left (6 a^4-5 a^2 b^2+2 b^4\right ) \int \frac {1}{a+b \cos (c+d x)}dx}{a}}{a \left (a^2-b^2\right )}+\frac {b^2 \left (5 a^2-2 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {2 \left (a^2-b^2\right )^2 \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {b \left (6 a^4-5 a^2 b^2+2 b^4\right ) \int \frac {1}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{a \left (a^2-b^2\right )}+\frac {b^2 \left (5 a^2-2 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3138

\(\displaystyle \frac {\frac {\frac {2 \left (a^2-b^2\right )^2 \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {2 b \left (6 a^4-5 a^2 b^2+2 b^4\right ) \int \frac {1}{(a-b) \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}d\tan \left (\frac {1}{2} (c+d x)\right )}{a d}}{a \left (a^2-b^2\right )}+\frac {b^2 \left (5 a^2-2 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\frac {2 \left (a^2-b^2\right )^2 \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{a}-\frac {2 b \left (6 a^4-5 a^2 b^2+2 b^4\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}}{a \left (a^2-b^2\right )}+\frac {b^2 \left (5 a^2-2 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}+\frac {\frac {b^2 \left (5 a^2-2 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {\frac {2 \left (a^2-b^2\right )^2 \text {arctanh}(\sin (c+d x))}{a d}-\frac {2 b \left (6 a^4-5 a^2 b^2+2 b^4\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}}{a \left (a^2-b^2\right )}}{2 a \left (a^2-b^2\right )}\)

Input:

Int[Sec[c + d*x]/(a + b*Cos[c + d*x])^3,x]
 

Output:

(b^2*Sin[c + d*x])/(2*a*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) + (((-2*b*(6 
*a^4 - 5*a^2*b^2 + 2*b^4)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b 
]])/(a*Sqrt[a - b]*Sqrt[a + b]*d) + (2*(a^2 - b^2)^2*ArcTanh[Sin[c + d*x]] 
)/(a*d))/(a*(a^2 - b^2)) + (b^2*(5*a^2 - 2*b^2)*Sin[c + d*x])/(a*(a^2 - b^ 
2)*d*(a + b*Cos[c + d*x])))/(2*a*(a^2 - b^2))
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 3281
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2 
))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n 
 + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n + 3)*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2* 
n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))
 

rule 3480
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A*b 
- a*B)/(b*c - a*d)   Int[1/(a + b*Sin[e + f*x]), x], x] + Simp[(B*c - A*d)/ 
(b*c - a*d)   Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 1.59 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.38

method result size
derivativedivides \(\frac {-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{3}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{3}}-\frac {2 b \left (\frac {-\frac {\left (6 a^{2}+a b -2 b^{2}\right ) a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 \left (a -b \right ) \left (a^{2}+2 a b +b^{2}\right )}-\frac {\left (6 a^{2}-a b -2 b^{2}\right ) a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 \left (a +b \right ) \left (a^{2}-2 a b +b^{2}\right )}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )^{2}}+\frac {\left (6 a^{4}-5 a^{2} b^{2}+2 b^{4}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{2 \left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{3}}}{d}\) \(251\)
default \(\frac {-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{3}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{3}}-\frac {2 b \left (\frac {-\frac {\left (6 a^{2}+a b -2 b^{2}\right ) a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 \left (a -b \right ) \left (a^{2}+2 a b +b^{2}\right )}-\frac {\left (6 a^{2}-a b -2 b^{2}\right ) a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 \left (a +b \right ) \left (a^{2}-2 a b +b^{2}\right )}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )^{2}}+\frac {\left (6 a^{4}-5 a^{2} b^{2}+2 b^{4}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{2 \left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{3}}}{d}\) \(251\)
risch \(\frac {i b \left (4 a^{3} b \,{\mathrm e}^{3 i \left (d x +c \right )}-a \,b^{3} {\mathrm e}^{3 i \left (d x +c \right )}+10 a^{4} {\mathrm e}^{2 i \left (d x +c \right )}+a^{2} b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-2 b^{4} {\mathrm e}^{2 i \left (d x +c \right )}+16 a^{3} b \,{\mathrm e}^{i \left (d x +c \right )}-7 b^{3} a \,{\mathrm e}^{i \left (d x +c \right )}+5 a^{2} b^{2}-2 b^{4}\right )}{a^{2} d \left (a^{2}-b^{2}\right )^{2} \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+2 a \,{\mathrm e}^{i \left (d x +c \right )}+b \right )^{2}}-\frac {3 b a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d}+\frac {5 b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{2 \sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d a}-\frac {b^{5} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d \,a^{3}}+\frac {3 a b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d}-\frac {5 b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{2 \sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d a}+\frac {b^{5} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d \,a^{3}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{a^{3} d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{a^{3} d}\) \(722\)

Input:

int(sec(d*x+c)/(a+cos(d*x+c)*b)^3,x,method=_RETURNVERBOSE)
 

Output:

1/d*(-1/a^3*ln(tan(1/2*d*x+1/2*c)-1)+1/a^3*ln(tan(1/2*d*x+1/2*c)+1)-2*b/a^ 
3*((-1/2*(6*a^2+a*b-2*b^2)*a*b/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3- 
1/2*(6*a^2-a*b-2*b^2)*a*b/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c))/(tan(1 
/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b+a+b)^2+1/2*(6*a^4-5*a^2*b^2+2*b^4 
)/(a^4-2*a^2*b^2+b^4)/((a-b)*(a+b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/ 
((a-b)*(a+b))^(1/2))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 536 vs. \(2 (169) = 338\).

Time = 0.63 (sec) , antiderivative size = 1142, normalized size of antiderivative = 6.27 \[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx=\text {Too large to display} \] Input:

integrate(sec(d*x+c)/(a+b*cos(d*x+c))^3,x, algorithm="fricas")
 

Output:

[-1/4*((6*a^6*b - 5*a^4*b^3 + 2*a^2*b^5 + (6*a^4*b^3 - 5*a^2*b^5 + 2*b^7)* 
cos(d*x + c)^2 + 2*(6*a^5*b^2 - 5*a^3*b^4 + 2*a*b^6)*cos(d*x + c))*sqrt(-a 
^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt( 
-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x 
+ c)^2 + 2*a*b*cos(d*x + c) + a^2)) - 2*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2 
*b^6 + (a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*cos(d*x + c)^2 + 2*(a^7*b - 
 3*a^5*b^3 + 3*a^3*b^5 - a*b^7)*cos(d*x + c))*log(sin(d*x + c) + 1) + 2*(a 
^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 + (a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - 
b^8)*cos(d*x + c)^2 + 2*(a^7*b - 3*a^5*b^3 + 3*a^3*b^5 - a*b^7)*cos(d*x + 
c))*log(-sin(d*x + c) + 1) - 2*(6*a^6*b^2 - 9*a^4*b^4 + 3*a^2*b^6 + (5*a^5 
*b^3 - 7*a^3*b^5 + 2*a*b^7)*cos(d*x + c))*sin(d*x + c))/((a^9*b^2 - 3*a^7* 
b^4 + 3*a^5*b^6 - a^3*b^8)*d*cos(d*x + c)^2 + 2*(a^10*b - 3*a^8*b^3 + 3*a^ 
6*b^5 - a^4*b^7)*d*cos(d*x + c) + (a^11 - 3*a^9*b^2 + 3*a^7*b^4 - a^5*b^6) 
*d), -1/2*((6*a^6*b - 5*a^4*b^3 + 2*a^2*b^5 + (6*a^4*b^3 - 5*a^2*b^5 + 2*b 
^7)*cos(d*x + c)^2 + 2*(6*a^5*b^2 - 5*a^3*b^4 + 2*a*b^6)*cos(d*x + c))*sqr 
t(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) 
- (a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 + (a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^ 
6 - b^8)*cos(d*x + c)^2 + 2*(a^7*b - 3*a^5*b^3 + 3*a^3*b^5 - a*b^7)*cos(d* 
x + c))*log(sin(d*x + c) + 1) + (a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6 + ( 
a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*cos(d*x + c)^2 + 2*(a^7*b - 3*a^...
 

Sympy [F]

\[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx=\int \frac {\sec {\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{3}}\, dx \] Input:

integrate(sec(d*x+c)/(a+b*cos(d*x+c))**3,x)
 

Output:

Integral(sec(c + d*x)/(a + b*cos(c + d*x))**3, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(sec(d*x+c)/(a+b*cos(d*x+c))^3,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 344 vs. \(2 (169) = 338\).

Time = 0.43 (sec) , antiderivative size = 344, normalized size of antiderivative = 1.89 \[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx=\frac {\frac {{\left (6 \, a^{4} b - 5 \, a^{2} b^{3} + 2 \, b^{5}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} \sqrt {a^{2} - b^{2}}} + \frac {6 \, a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 5 \, a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 3 \, a b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, b^{5} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 6 \, a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 5 \, a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, a b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, b^{5} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a^{6} - 2 \, a^{4} b^{2} + a^{2} b^{4}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b\right )}^{2}} + \frac {\log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} - \frac {\log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}}}{d} \] Input:

integrate(sec(d*x+c)/(a+b*cos(d*x+c))^3,x, algorithm="giac")
 

Output:

((6*a^4*b - 5*a^2*b^3 + 2*b^5)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a 
+ 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^ 
2 - b^2)))/((a^7 - 2*a^5*b^2 + a^3*b^4)*sqrt(a^2 - b^2)) + (6*a^3*b^2*tan( 
1/2*d*x + 1/2*c)^3 - 5*a^2*b^3*tan(1/2*d*x + 1/2*c)^3 - 3*a*b^4*tan(1/2*d* 
x + 1/2*c)^3 + 2*b^5*tan(1/2*d*x + 1/2*c)^3 + 6*a^3*b^2*tan(1/2*d*x + 1/2* 
c) + 5*a^2*b^3*tan(1/2*d*x + 1/2*c) - 3*a*b^4*tan(1/2*d*x + 1/2*c) - 2*b^5 
*tan(1/2*d*x + 1/2*c))/((a^6 - 2*a^4*b^2 + a^2*b^4)*(a*tan(1/2*d*x + 1/2*c 
)^2 - b*tan(1/2*d*x + 1/2*c)^2 + a + b)^2) + log(abs(tan(1/2*d*x + 1/2*c) 
+ 1))/a^3 - log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^3)/d
 

Mupad [B] (verification not implemented)

Time = 49.54 (sec) , antiderivative size = 5090, normalized size of antiderivative = 27.97 \[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx=\text {Too large to display} \] Input:

int(1/(cos(c + d*x)*(a + b*cos(c + d*x))^3),x)
 

Output:

- (atan((((((8*(12*a^14*b - 4*a^15 + 4*a^6*b^9 - 2*a^7*b^8 - 18*a^8*b^7 + 
4*a^9*b^6 + 36*a^10*b^5 - 6*a^11*b^4 - 34*a^12*b^3 + 8*a^13*b^2))/(a^12*b 
+ a^13 - a^6*b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b 
^2) - (8*tan(c/2 + (d*x)/2)*(8*a^15*b - 8*a^6*b^10 + 8*a^7*b^9 + 32*a^8*b^ 
8 - 32*a^9*b^7 - 48*a^10*b^6 + 48*a^11*b^5 + 32*a^12*b^4 - 32*a^13*b^3 - 8 
*a^14*b^2))/(a^3*(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^ 
4 - 3*a^8*b^3 - 3*a^9*b^2)))/a^3 - (8*tan(c/2 + (d*x)/2)*(4*a^10 - 8*a^9*b 
 - 8*a*b^9 + 8*b^10 - 32*a^2*b^8 + 32*a^3*b^7 + 57*a^4*b^6 - 48*a^5*b^5 - 
52*a^6*b^4 + 32*a^7*b^3 + 24*a^8*b^2))/(a^10*b + a^11 - a^4*b^7 - a^5*b^6 
+ 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2))*1i)/a^3 - ((((8*(12*a^14 
*b - 4*a^15 + 4*a^6*b^9 - 2*a^7*b^8 - 18*a^8*b^7 + 4*a^9*b^6 + 36*a^10*b^5 
 - 6*a^11*b^4 - 34*a^12*b^3 + 8*a^13*b^2))/(a^12*b + a^13 - a^6*b^7 - a^7* 
b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b^2) + (8*tan(c/2 + (d*x 
)/2)*(8*a^15*b - 8*a^6*b^10 + 8*a^7*b^9 + 32*a^8*b^8 - 32*a^9*b^7 - 48*a^1 
0*b^6 + 48*a^11*b^5 + 32*a^12*b^4 - 32*a^13*b^3 - 8*a^14*b^2))/(a^3*(a^10* 
b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b 
^2)))/a^3 + (8*tan(c/2 + (d*x)/2)*(4*a^10 - 8*a^9*b - 8*a*b^9 + 8*b^10 - 3 
2*a^2*b^8 + 32*a^3*b^7 + 57*a^4*b^6 - 48*a^5*b^5 - 52*a^6*b^4 + 32*a^7*b^3 
 + 24*a^8*b^2))/(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 
 - 3*a^8*b^3 - 3*a^9*b^2))*1i)/a^3)/((((8*(12*a^14*b - 4*a^15 + 4*a^6*b...
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 1406, normalized size of antiderivative = 7.73 \[ \int \frac {\sec (c+d x)}{(a+b \cos (c+d x))^3} \, dx =\text {Too large to display} \] Input:

int(sec(d*x+c)/(a+b*cos(d*x+c))^3,x)
 

Output:

( - 24*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sq 
rt(a**2 - b**2))*cos(c + d*x)*a**5*b**2 + 20*sqrt(a**2 - b**2)*atan((tan(( 
c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 - b**2))*cos(c + d*x)*a**3*b 
**4 - 8*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/s 
qrt(a**2 - b**2))*cos(c + d*x)*a*b**6 + 12*sqrt(a**2 - b**2)*atan((tan((c 
+ d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 - b**2))*sin(c + d*x)**2*a**4* 
b**3 - 10*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b) 
/sqrt(a**2 - b**2))*sin(c + d*x)**2*a**2*b**5 + 4*sqrt(a**2 - b**2)*atan(( 
tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 - b**2))*sin(c + d*x)** 
2*b**7 - 12*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)* 
b)/sqrt(a**2 - b**2))*a**6*b - 2*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)* 
a - tan((c + d*x)/2)*b)/sqrt(a**2 - b**2))*a**4*b**3 + 6*sqrt(a**2 - b**2) 
*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 - b**2))*a**2*b* 
*5 - 4*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sq 
rt(a**2 - b**2))*b**7 - 4*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*a**7*b + 
12*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*a**5*b**3 - 12*cos(c + d*x)*log( 
tan((c + d*x)/2) - 1)*a**3*b**5 + 4*cos(c + d*x)*log(tan((c + d*x)/2) - 1) 
*a*b**7 + 4*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a**7*b - 12*cos(c + d*x 
)*log(tan((c + d*x)/2) + 1)*a**5*b**3 + 12*cos(c + d*x)*log(tan((c + d*x)/ 
2) + 1)*a**3*b**5 - 4*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a*b**7 + 5...