\(\int \frac {\cos ^5(c+d x)}{(a+b \cos (c+d x))^4} \, dx\) [478]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 307 \[ \int \frac {\cos ^5(c+d x)}{(a+b \cos (c+d x))^4} \, dx=-\frac {4 a x}{b^5}+\frac {a^2 \left (8 a^6-28 a^4 b^2+35 a^2 b^4-20 b^6\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{(a-b)^{7/2} b^5 (a+b)^{7/2} d}+\frac {\left (12 a^4-23 a^2 b^2+6 b^4\right ) \sin (c+d x)}{6 b^4 \left (a^2-b^2\right )^2 d}-\frac {a^2 \cos ^3(c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^3}-\frac {a^2 \left (4 a^2-9 b^2\right ) \cos ^2(c+d x) \sin (c+d x)}{6 b^2 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))^2}+\frac {a^3 \left (4 a^4-11 a^2 b^2+12 b^4\right ) \sin (c+d x)}{2 b^4 \left (a^2-b^2\right )^3 d (a+b \cos (c+d x))} \] Output:

-4*a*x/b^5+a^2*(8*a^6-28*a^4*b^2+35*a^2*b^4-20*b^6)*arctan((a-b)^(1/2)*tan 
(1/2*d*x+1/2*c)/(a+b)^(1/2))/(a-b)^(7/2)/b^5/(a+b)^(7/2)/d+1/6*(12*a^4-23* 
a^2*b^2+6*b^4)*sin(d*x+c)/b^4/(a^2-b^2)^2/d-1/3*a^2*cos(d*x+c)^3*sin(d*x+c 
)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))^3-1/6*a^2*(4*a^2-9*b^2)*cos(d*x+c)^2*sin( 
d*x+c)/b^2/(a^2-b^2)^2/d/(a+b*cos(d*x+c))^2+1/2*a^3*(4*a^4-11*a^2*b^2+12*b 
^4)*sin(d*x+c)/b^4/(a^2-b^2)^3/d/(a+b*cos(d*x+c))
 

Mathematica [A] (verified)

Time = 6.72 (sec) , antiderivative size = 240, normalized size of antiderivative = 0.78 \[ \int \frac {\cos ^5(c+d x)}{(a+b \cos (c+d x))^4} \, dx=\frac {-24 a (c+d x)+\frac {6 a^2 \left (8 a^6-28 a^4 b^2+35 a^2 b^4-20 b^6\right ) \text {arctanh}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\left (-a^2+b^2\right )^{7/2}}+6 b \sin (c+d x)+\frac {2 a^5 b \sin (c+d x)}{(a-b) (a+b) (a+b \cos (c+d x))^3}+\frac {5 a^4 b \left (-2 a^2+3 b^2\right ) \sin (c+d x)}{(a-b)^2 (a+b)^2 (a+b \cos (c+d x))^2}+\frac {a^3 b \left (26 a^4-71 a^2 b^2+60 b^4\right ) \sin (c+d x)}{(a-b)^3 (a+b)^3 (a+b \cos (c+d x))}}{6 b^5 d} \] Input:

Integrate[Cos[c + d*x]^5/(a + b*Cos[c + d*x])^4,x]
 

Output:

(-24*a*(c + d*x) + (6*a^2*(8*a^6 - 28*a^4*b^2 + 35*a^2*b^4 - 20*b^6)*ArcTa 
nh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(7/2) + 6*b* 
Sin[c + d*x] + (2*a^5*b*Sin[c + d*x])/((a - b)*(a + b)*(a + b*Cos[c + d*x] 
)^3) + (5*a^4*b*(-2*a^2 + 3*b^2)*Sin[c + d*x])/((a - b)^2*(a + b)^2*(a + b 
*Cos[c + d*x])^2) + (a^3*b*(26*a^4 - 71*a^2*b^2 + 60*b^4)*Sin[c + d*x])/(( 
a - b)^3*(a + b)^3*(a + b*Cos[c + d*x])))/(6*b^5*d)
 

Rubi [A] (verified)

Time = 1.81 (sec) , antiderivative size = 364, normalized size of antiderivative = 1.19, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.714, Rules used = {3042, 3271, 3042, 3526, 25, 3042, 3510, 3042, 3502, 27, 3042, 3214, 3042, 3138, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^5(c+d x)}{(a+b \cos (c+d x))^4} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^5}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^4}dx\)

\(\Big \downarrow \) 3271

\(\displaystyle -\frac {\int \frac {\cos ^2(c+d x) \left (3 a^2-3 b \cos (c+d x) a-\left (4 a^2-3 b^2\right ) \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^3}dx}{3 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (3 a^2-3 b \sin \left (c+d x+\frac {\pi }{2}\right ) a+\left (3 b^2-4 a^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^3}dx}{3 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}\)

\(\Big \downarrow \) 3526

\(\displaystyle -\frac {\frac {a^2 \left (4 a^2-9 b^2\right ) \sin (c+d x) \cos ^2(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}-\frac {\int -\frac {\cos (c+d x) \left (2 \left (4 a^2-9 b^2\right ) a^2-2 b \left (a^2-6 b^2\right ) \cos (c+d x) a-\left (12 a^4-23 b^2 a^2+6 b^4\right ) \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2}dx}{2 b \left (a^2-b^2\right )}}{3 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {\int \frac {\cos (c+d x) \left (2 \left (4 a^2-9 b^2\right ) a^2-2 b \left (a^2-6 b^2\right ) \cos (c+d x) a-\left (12 a^4-23 b^2 a^2+6 b^4\right ) \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2}dx}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (4 a^2-9 b^2\right ) \sin (c+d x) \cos ^2(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}}{3 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right ) \left (2 \left (4 a^2-9 b^2\right ) a^2-2 b \left (a^2-6 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a+\left (-12 a^4+23 b^2 a^2-6 b^4\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (4 a^2-9 b^2\right ) \sin (c+d x) \cos ^2(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}}{3 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}\)

\(\Big \downarrow \) 3510

\(\displaystyle -\frac {\frac {\frac {\int \frac {3 b \left (4 a^4-11 b^2 a^2+12 b^4\right ) a^2+\left (12 a^6-37 b^2 a^4+43 b^4 a^2-18 b^6\right ) \cos (c+d x) a-b \left (a^2-b^2\right ) \left (12 a^4-23 b^2 a^2+6 b^4\right ) \cos ^2(c+d x)}{a+b \cos (c+d x)}dx}{b^2 \left (a^2-b^2\right )}-\frac {3 a^3 \left (4 a^4-11 a^2 b^2+12 b^4\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (4 a^2-9 b^2\right ) \sin (c+d x) \cos ^2(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}}{3 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {\int \frac {3 b \left (4 a^4-11 b^2 a^2+12 b^4\right ) a^2+\left (12 a^6-37 b^2 a^4+43 b^4 a^2-18 b^6\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a-b \left (a^2-b^2\right ) \left (12 a^4-23 b^2 a^2+6 b^4\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2 \left (a^2-b^2\right )}-\frac {3 a^3 \left (4 a^4-11 a^2 b^2+12 b^4\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (4 a^2-9 b^2\right ) \sin (c+d x) \cos ^2(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}}{3 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}\)

\(\Big \downarrow \) 3502

\(\displaystyle -\frac {\frac {\frac {\frac {\int \frac {3 \left (8 a b \cos (c+d x) \left (a^2-b^2\right )^3+a^2 b^2 \left (4 a^4-11 b^2 a^2+12 b^4\right )\right )}{a+b \cos (c+d x)}dx}{b}-\frac {\left (a^2-b^2\right ) \left (12 a^4-23 a^2 b^2+6 b^4\right ) \sin (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}-\frac {3 a^3 \left (4 a^4-11 a^2 b^2+12 b^4\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (4 a^2-9 b^2\right ) \sin (c+d x) \cos ^2(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}}{3 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\frac {\frac {3 \int \frac {8 a b \cos (c+d x) \left (a^2-b^2\right )^3+a^2 b^2 \left (4 a^4-11 b^2 a^2+12 b^4\right )}{a+b \cos (c+d x)}dx}{b}-\frac {\left (a^2-b^2\right ) \left (12 a^4-23 a^2 b^2+6 b^4\right ) \sin (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}-\frac {3 a^3 \left (4 a^4-11 a^2 b^2+12 b^4\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (4 a^2-9 b^2\right ) \sin (c+d x) \cos ^2(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}}{3 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {\frac {3 \int \frac {8 a b \sin \left (c+d x+\frac {\pi }{2}\right ) \left (a^2-b^2\right )^3+a^2 b^2 \left (4 a^4-11 b^2 a^2+12 b^4\right )}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}-\frac {\left (a^2-b^2\right ) \left (12 a^4-23 a^2 b^2+6 b^4\right ) \sin (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}-\frac {3 a^3 \left (4 a^4-11 a^2 b^2+12 b^4\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (4 a^2-9 b^2\right ) \sin (c+d x) \cos ^2(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}}{3 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}\)

\(\Big \downarrow \) 3214

\(\displaystyle -\frac {\frac {\frac {\frac {3 \left (8 a x \left (a^2-b^2\right )^3-a^2 \left (8 a^6-28 a^4 b^2+35 a^2 b^4-20 b^6\right ) \int \frac {1}{a+b \cos (c+d x)}dx\right )}{b}-\frac {\left (a^2-b^2\right ) \left (12 a^4-23 a^2 b^2+6 b^4\right ) \sin (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}-\frac {3 a^3 \left (4 a^4-11 a^2 b^2+12 b^4\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (4 a^2-9 b^2\right ) \sin (c+d x) \cos ^2(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}}{3 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {\frac {3 \left (8 a x \left (a^2-b^2\right )^3-a^2 \left (8 a^6-28 a^4 b^2+35 a^2 b^4-20 b^6\right ) \int \frac {1}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )}{b}-\frac {\left (a^2-b^2\right ) \left (12 a^4-23 a^2 b^2+6 b^4\right ) \sin (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}-\frac {3 a^3 \left (4 a^4-11 a^2 b^2+12 b^4\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (4 a^2-9 b^2\right ) \sin (c+d x) \cos ^2(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}}{3 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}\)

\(\Big \downarrow \) 3138

\(\displaystyle -\frac {\frac {\frac {\frac {3 \left (8 a x \left (a^2-b^2\right )^3-\frac {2 a^2 \left (8 a^6-28 a^4 b^2+35 a^2 b^4-20 b^6\right ) \int \frac {1}{(a-b) \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b}d\tan \left (\frac {1}{2} (c+d x)\right )}{d}\right )}{b}-\frac {\left (a^2-b^2\right ) \left (12 a^4-23 a^2 b^2+6 b^4\right ) \sin (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}-\frac {3 a^3 \left (4 a^4-11 a^2 b^2+12 b^4\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{2 b \left (a^2-b^2\right )}+\frac {a^2 \left (4 a^2-9 b^2\right ) \sin (c+d x) \cos ^2(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}}{3 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^3}-\frac {\frac {a^2 \left (4 a^2-9 b^2\right ) \sin (c+d x) \cos ^2(c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2}+\frac {\frac {\frac {3 \left (8 a x \left (a^2-b^2\right )^3-\frac {2 a^2 \left (8 a^6-28 a^4 b^2+35 a^2 b^4-20 b^6\right ) \arctan \left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{d \sqrt {a-b} \sqrt {a+b}}\right )}{b}-\frac {\left (a^2-b^2\right ) \left (12 a^4-23 a^2 b^2+6 b^4\right ) \sin (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}-\frac {3 a^3 \left (4 a^4-11 a^2 b^2+12 b^4\right ) \sin (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \cos (c+d x))}}{2 b \left (a^2-b^2\right )}}{3 b \left (a^2-b^2\right )}\)

Input:

Int[Cos[c + d*x]^5/(a + b*Cos[c + d*x])^4,x]
 

Output:

-1/3*(a^2*Cos[c + d*x]^3*Sin[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Cos[c + d*x 
])^3) - ((a^2*(4*a^2 - 9*b^2)*Cos[c + d*x]^2*Sin[c + d*x])/(2*b*(a^2 - b^2 
)*d*(a + b*Cos[c + d*x])^2) + ((-3*a^3*(4*a^4 - 11*a^2*b^2 + 12*b^4)*Sin[c 
 + d*x])/(b^2*(a^2 - b^2)*d*(a + b*Cos[c + d*x])) + ((3*(8*a*(a^2 - b^2)^3 
*x - (2*a^2*(8*a^6 - 28*a^4*b^2 + 35*a^2*b^4 - 20*b^6)*ArcTan[(Sqrt[a - b] 
*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - b]*Sqrt[a + b]*d)))/b - ((a^2 - 
 b^2)*(12*a^4 - 23*a^2*b^2 + 6*b^4)*Sin[c + d*x])/d)/(b^2*(a^2 - b^2)))/(2 
*b*(a^2 - b^2)))/(3*b*(a^2 - b^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3271
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*Co 
s[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f* 
(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin 
[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^ 
2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 + c*d*(a^2 
+ b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - 
 d^2) - m*(b*c - a*d)^2 + d*n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x] 
, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - 
b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || 
IntegersQ[2*m, 2*n])
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3510
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f 
_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)*Cos[ 
e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - S 
imp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*( 
m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d + b^2*d*(m 
 + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1)) 
))*Sin[e + f*x] - b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; F 
reeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 
 0] && LtQ[m, -1]
 

rule 3526
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^(m - 
 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + (c*C - B* 
d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 
1) - a*c*(n + 2))) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x 
] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f 
*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d 
, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]
 
Maple [A] (verified)

Time = 2.63 (sec) , antiderivative size = 395, normalized size of antiderivative = 1.29

method result size
derivativedivides \(\frac {\frac {2 a^{2} \left (\frac {\frac {\left (6 a^{4}-2 a^{3} b -18 a^{2} b^{2}+5 a \,b^{3}+20 b^{4}\right ) a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{2 \left (a -b \right ) \left (a^{3}+3 a^{2} b +3 b^{2} a +b^{3}\right )}+\frac {2 \left (9 a^{4}-29 a^{2} b^{2}+30 b^{4}\right ) a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3 \left (a^{2}-2 a b +b^{2}\right ) \left (a^{2}+2 a b +b^{2}\right )}+\frac {\left (6 a^{4}+2 a^{3} b -18 a^{2} b^{2}-5 a \,b^{3}+20 b^{4}\right ) a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 \left (a +b \right ) \left (a^{3}-3 a^{2} b +3 b^{2} a -b^{3}\right )}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )^{3}}+\frac {\left (8 a^{6}-28 a^{4} b^{2}+35 b^{4} a^{2}-20 b^{6}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{2 \left (a^{6}-3 a^{4} b^{2}+3 b^{4} a^{2}-b^{6}\right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{b^{5}}-\frac {2 \left (-\frac {b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+4 a \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{b^{5}}}{d}\) \(395\)
default \(\frac {\frac {2 a^{2} \left (\frac {\frac {\left (6 a^{4}-2 a^{3} b -18 a^{2} b^{2}+5 a \,b^{3}+20 b^{4}\right ) a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{2 \left (a -b \right ) \left (a^{3}+3 a^{2} b +3 b^{2} a +b^{3}\right )}+\frac {2 \left (9 a^{4}-29 a^{2} b^{2}+30 b^{4}\right ) a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3 \left (a^{2}-2 a b +b^{2}\right ) \left (a^{2}+2 a b +b^{2}\right )}+\frac {\left (6 a^{4}+2 a^{3} b -18 a^{2} b^{2}-5 a \,b^{3}+20 b^{4}\right ) a b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 \left (a +b \right ) \left (a^{3}-3 a^{2} b +3 b^{2} a -b^{3}\right )}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b \right )^{3}}+\frac {\left (8 a^{6}-28 a^{4} b^{2}+35 b^{4} a^{2}-20 b^{6}\right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{2 \left (a^{6}-3 a^{4} b^{2}+3 b^{4} a^{2}-b^{6}\right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{b^{5}}-\frac {2 \left (-\frac {b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+4 a \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{b^{5}}}{d}\) \(395\)
risch \(\text {Expression too large to display}\) \(1096\)

Input:

int(cos(d*x+c)^5/(a+cos(d*x+c)*b)^4,x,method=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

1/d*(2*a^2/b^5*((1/2*(6*a^4-2*a^3*b-18*a^2*b^2+5*a*b^3+20*b^4)*a*b/(a-b)/( 
a^3+3*a^2*b+3*a*b^2+b^3)*tan(1/2*d*x+1/2*c)^5+2/3*(9*a^4-29*a^2*b^2+30*b^4 
)*a*b/(a^2-2*a*b+b^2)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3+1/2*(6*a^4+2*a^ 
3*b-18*a^2*b^2-5*a*b^3+20*b^4)*a*b/(a+b)/(a^3-3*a^2*b+3*a*b^2-b^3)*tan(1/2 
*d*x+1/2*c))/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b+a+b)^3+1/2*(8* 
a^6-28*a^4*b^2+35*a^2*b^4-20*b^6)/(a^6-3*a^4*b^2+3*a^2*b^4-b^6)/((a-b)*(a+ 
b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a-b)*(a+b))^(1/2)))-2/b^5*(-b* 
tan(1/2*d*x+1/2*c)/(1+tan(1/2*d*x+1/2*c)^2)+4*a*arctan(tan(1/2*d*x+1/2*c)) 
))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 762 vs. \(2 (290) = 580\).

Time = 0.19 (sec) , antiderivative size = 1593, normalized size of antiderivative = 5.19 \[ \int \frac {\cos ^5(c+d x)}{(a+b \cos (c+d x))^4} \, dx=\text {Too large to display} \] Input:

integrate(cos(d*x+c)^5/(a+b*cos(d*x+c))^4,x, algorithm="fricas")
 

Output:

[-1/12*(48*(a^9*b^3 - 4*a^7*b^5 + 6*a^5*b^7 - 4*a^3*b^9 + a*b^11)*d*x*cos( 
d*x + c)^3 + 144*(a^10*b^2 - 4*a^8*b^4 + 6*a^6*b^6 - 4*a^4*b^8 + a^2*b^10) 
*d*x*cos(d*x + c)^2 + 144*(a^11*b - 4*a^9*b^3 + 6*a^7*b^5 - 4*a^5*b^7 + a^ 
3*b^9)*d*x*cos(d*x + c) + 48*(a^12 - 4*a^10*b^2 + 6*a^8*b^4 - 4*a^6*b^6 + 
a^4*b^8)*d*x + 3*(8*a^11 - 28*a^9*b^2 + 35*a^7*b^4 - 20*a^5*b^6 + (8*a^8*b 
^3 - 28*a^6*b^5 + 35*a^4*b^7 - 20*a^2*b^9)*cos(d*x + c)^3 + 3*(8*a^9*b^2 - 
 28*a^7*b^4 + 35*a^5*b^6 - 20*a^3*b^8)*cos(d*x + c)^2 + 3*(8*a^10*b - 28*a 
^8*b^3 + 35*a^6*b^5 - 20*a^4*b^7)*cos(d*x + c))*sqrt(-a^2 + b^2)*log((2*a* 
b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 + 2*sqrt(-a^2 + b^2)*(a*cos( 
d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos( 
d*x + c) + a^2)) - 2*(24*a^11*b - 92*a^9*b^3 + 133*a^7*b^5 - 71*a^5*b^7 + 
6*a^3*b^9 + 6*(a^8*b^4 - 4*a^6*b^6 + 6*a^4*b^8 - 4*a^2*b^10 + b^12)*cos(d* 
x + c)^3 + (44*a^9*b^3 - 169*a^7*b^5 + 239*a^5*b^7 - 132*a^3*b^9 + 18*a*b^ 
11)*cos(d*x + c)^2 + 3*(20*a^10*b^2 - 77*a^8*b^4 + 110*a^6*b^6 - 59*a^4*b^ 
8 + 6*a^2*b^10)*cos(d*x + c))*sin(d*x + c))/((a^8*b^8 - 4*a^6*b^10 + 6*a^4 
*b^12 - 4*a^2*b^14 + b^16)*d*cos(d*x + c)^3 + 3*(a^9*b^7 - 4*a^7*b^9 + 6*a 
^5*b^11 - 4*a^3*b^13 + a*b^15)*d*cos(d*x + c)^2 + 3*(a^10*b^6 - 4*a^8*b^8 
+ 6*a^6*b^10 - 4*a^4*b^12 + a^2*b^14)*d*cos(d*x + c) + (a^11*b^5 - 4*a^9*b 
^7 + 6*a^7*b^9 - 4*a^5*b^11 + a^3*b^13)*d), -1/6*(24*(a^9*b^3 - 4*a^7*b^5 
+ 6*a^5*b^7 - 4*a^3*b^9 + a*b^11)*d*x*cos(d*x + c)^3 + 72*(a^10*b^2 - 4...
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^5(c+d x)}{(a+b \cos (c+d x))^4} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**5/(a+b*cos(d*x+c))**4,x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\cos ^5(c+d x)}{(a+b \cos (c+d x))^4} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(cos(d*x+c)^5/(a+b*cos(d*x+c))^4,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 

Giac [A] (verification not implemented)

Time = 0.60 (sec) , antiderivative size = 563, normalized size of antiderivative = 1.83 \[ \int \frac {\cos ^5(c+d x)}{(a+b \cos (c+d x))^4} \, dx =\text {Too large to display} \] Input:

integrate(cos(d*x+c)^5/(a+b*cos(d*x+c))^4,x, algorithm="giac")
 

Output:

-1/3*(3*(8*a^8 - 28*a^6*b^2 + 35*a^4*b^4 - 20*a^2*b^6)*(pi*floor(1/2*(d*x 
+ c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1 
/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/((a^6*b^5 - 3*a^4*b^7 + 3*a^2*b^9 - b^1 
1)*sqrt(a^2 - b^2)) - (18*a^9*tan(1/2*d*x + 1/2*c)^5 - 42*a^8*b*tan(1/2*d* 
x + 1/2*c)^5 - 24*a^7*b^2*tan(1/2*d*x + 1/2*c)^5 + 117*a^6*b^3*tan(1/2*d*x 
 + 1/2*c)^5 - 24*a^5*b^4*tan(1/2*d*x + 1/2*c)^5 - 105*a^4*b^5*tan(1/2*d*x 
+ 1/2*c)^5 + 60*a^3*b^6*tan(1/2*d*x + 1/2*c)^5 + 36*a^9*tan(1/2*d*x + 1/2* 
c)^3 - 152*a^7*b^2*tan(1/2*d*x + 1/2*c)^3 + 236*a^5*b^4*tan(1/2*d*x + 1/2* 
c)^3 - 120*a^3*b^6*tan(1/2*d*x + 1/2*c)^3 + 18*a^9*tan(1/2*d*x + 1/2*c) + 
42*a^8*b*tan(1/2*d*x + 1/2*c) - 24*a^7*b^2*tan(1/2*d*x + 1/2*c) - 117*a^6* 
b^3*tan(1/2*d*x + 1/2*c) - 24*a^5*b^4*tan(1/2*d*x + 1/2*c) + 105*a^4*b^5*t 
an(1/2*d*x + 1/2*c) + 60*a^3*b^6*tan(1/2*d*x + 1/2*c))/((a^6*b^4 - 3*a^4*b 
^6 + 3*a^2*b^8 - b^10)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^ 
2 + a + b)^3) + 12*(d*x + c)*a/b^5 - 6*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x 
+ 1/2*c)^2 + 1)*b^4))/d
 

Mupad [B] (verification not implemented)

Time = 49.94 (sec) , antiderivative size = 7494, normalized size of antiderivative = 24.41 \[ \int \frac {\cos ^5(c+d x)}{(a+b \cos (c+d x))^4} \, dx=\text {Too large to display} \] Input:

int(cos(c + d*x)^5/(a + b*cos(c + d*x))^4,x)
 

Output:

- ((tan(c/2 + (d*x)/2)^3*(12*a^7*b - 72*a^8 - 18*b^8 + 72*a^2*b^6 + 60*a^3 
*b^5 - 273*a^4*b^4 - 47*a^5*b^3 + 236*a^6*b^2))/(3*b^4*(a + b)^2*(a - b)^3 
) - (tan(c/2 + (d*x)/2)^5*(12*a^7*b + 72*a^8 + 18*b^8 - 72*a^2*b^6 + 60*a^ 
3*b^5 + 273*a^4*b^4 - 47*a^5*b^3 - 236*a^6*b^2))/(3*b^4*(a + b)^3*(a - b)^ 
2) + (tan(c/2 + (d*x)/2)*(2*a*b^6 - 4*a^6*b - 8*a^7 + 2*b^7 - 6*a^2*b^5 - 
26*a^3*b^4 + 11*a^4*b^3 + 24*a^5*b^2))/(b^4*(a + b)*(a - b)^3) + (tan(c/2 
+ (d*x)/2)^7*(2*a*b^6 + 4*a^6*b - 8*a^7 - 2*b^7 + 6*a^2*b^5 - 26*a^3*b^4 - 
 11*a^4*b^3 + 24*a^5*b^2))/(b^4*(a + b)^3*(a - b)))/(d*(3*a*b^2 + 3*a^2*b 
- tan(c/2 + (d*x)/2)^4*(6*a*b^2 - 6*a^3) + tan(c/2 + (d*x)/2)^2*(6*a^2*b + 
 4*a^3 - 2*b^3) + tan(c/2 + (d*x)/2)^6*(4*a^3 - 6*a^2*b + 2*b^3) + a^3 + b 
^3 + tan(c/2 + (d*x)/2)^8*(3*a*b^2 - 3*a^2*b + a^3 - b^3))) - (8*a*atan((( 
4*a*((8*tan(c/2 + (d*x)/2)*(128*a^16 - 128*a^15*b + 64*a^2*b^14 - 128*a^3* 
b^13 + 80*a^4*b^12 + 768*a^5*b^11 - 824*a^6*b^10 - 1920*a^7*b^9 + 2025*a^8 
*b^8 + 2560*a^9*b^7 - 2600*a^10*b^6 - 1920*a^11*b^5 + 1920*a^12*b^4 + 768* 
a^13*b^3 - 768*a^14*b^2))/(a*b^18 + b^19 - 5*a^2*b^17 - 5*a^3*b^16 + 10*a^ 
4*b^15 + 10*a^5*b^14 - 10*a^6*b^13 - 10*a^7*b^12 + 5*a^8*b^11 + 5*a^9*b^10 
 - a^10*b^9 - a^11*b^8) + (a*((16*(8*a*b^23 - 20*a^2*b^22 - 36*a^3*b^21 + 
95*a^4*b^20 + 73*a^5*b^19 - 193*a^6*b^18 - 87*a^7*b^17 + 217*a^8*b^16 + 63 
*a^9*b^15 - 143*a^10*b^14 - 25*a^11*b^13 + 52*a^12*b^12 + 4*a^13*b^11 - 8* 
a^14*b^10))/(a*b^22 + b^23 - 5*a^2*b^21 - 5*a^3*b^20 + 10*a^4*b^19 + 10...
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 2510, normalized size of antiderivative = 8.18 \[ \int \frac {\cos ^5(c+d x)}{(a+b \cos (c+d x))^4} \, dx =\text {Too large to display} \] Input:

int(cos(d*x+c)^5/(a+b*cos(d*x+c))^4,x)
 

Output:

(48*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt( 
a**2 - b**2))*cos(c + d*x)*sin(c + d*x)**2*a**8*b**3 - 168*sqrt(a**2 - b** 
2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 - b**2))*cos(c 
 + d*x)*sin(c + d*x)**2*a**6*b**5 + 210*sqrt(a**2 - b**2)*atan((tan((c + d 
*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 - b**2))*cos(c + d*x)*sin(c + d*x 
)**2*a**4*b**7 - 120*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + 
 d*x)/2)*b)/sqrt(a**2 - b**2))*cos(c + d*x)*sin(c + d*x)**2*a**2*b**9 - 14 
4*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a* 
*2 - b**2))*cos(c + d*x)*a**10*b + 456*sqrt(a**2 - b**2)*atan((tan((c + d* 
x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 - b**2))*cos(c + d*x)*a**8*b**3 - 
462*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt( 
a**2 - b**2))*cos(c + d*x)*a**6*b**5 + 150*sqrt(a**2 - b**2)*atan((tan((c 
+ d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 - b**2))*cos(c + d*x)*a**4*b** 
7 + 120*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/s 
qrt(a**2 - b**2))*cos(c + d*x)*a**2*b**9 + 144*sqrt(a**2 - b**2)*atan((tan 
((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 - b**2))*sin(c + d*x)**2*a 
**9*b**2 - 504*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/ 
2)*b)/sqrt(a**2 - b**2))*sin(c + d*x)**2*a**7*b**4 + 630*sqrt(a**2 - b**2) 
*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt(a**2 - b**2))*sin(c + 
 d*x)**2*a**5*b**6 - 360*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a - t...