\(\int \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \, dx\) [491]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 197 \[ \int \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \, dx=-\frac {\sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {a \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {\sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d} \] Output:

-(a+b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/ 
2))/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+a*((a+b*cos(d*x+c))/(a+b))^(1/2)*Inve 
rseJacobiAM(1/2*d*x+1/2*c,2^(1/2)*(b/(a+b))^(1/2))/d/(a+b*cos(d*x+c))^(1/2 
)+b*((a+b*cos(d*x+c))/(a+b))^(1/2)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2) 
*(b/(a+b))^(1/2))/d/(a+b*cos(d*x+c))^(1/2)+(a+b*cos(d*x+c))^(1/2)*tan(d*x+ 
c)/d
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 16.57 (sec) , antiderivative size = 307, normalized size of antiderivative = 1.56 \[ \int \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \, dx=\frac {\frac {2 b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}-\frac {2 i \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {b (1+\cos (c+d x))}{-a+b}} \csc (c+d x) \left (-2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )+b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right )}{a b \sqrt {-\frac {1}{a+b}}}+4 \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 d} \] Input:

Integrate[Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^2,x]
 

Output:

((2*b*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/ 
(a + b)])/Sqrt[a + b*Cos[c + d*x]] - ((2*I)*Sqrt[-((b*(-1 + Cos[c + d*x])) 
/(a + b))]*Sqrt[(b*(1 + Cos[c + d*x]))/(-a + b)]*Csc[c + d*x]*(-2*a*(a - b 
)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + 
b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*C 
os[c + d*x]]], (a + b)/(a - b)] + b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[- 
(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a*b*Sqrt[-(a 
 + b)^(-1)]) + 4*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/(4*d)
 

Rubi [A] (verified)

Time = 1.65 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.08, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.783, Rules used = {3042, 3275, 27, 3042, 3539, 25, 3042, 3134, 3042, 3132, 3481, 3042, 3142, 3042, 3140, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) \sqrt {a+b \cos (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx\)

\(\Big \downarrow \) 3275

\(\displaystyle \int \frac {\left (b-b \cos ^2(c+d x)\right ) \sec (c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \int \frac {\left (b-b \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {b-b \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3539

\(\displaystyle \frac {1}{2} \left (-\frac {\int -\frac {\left (b^2+a \cos (c+d x) b\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\int \sqrt {a+b \cos (c+d x)}dx\right )+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {\left (b^2+a \cos (c+d x) b\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\int \sqrt {a+b \cos (c+d x)}dx\right )+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {b^2+a \sin \left (c+d x+\frac {\pi }{2}\right ) b}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {b^2+a \sin \left (c+d x+\frac {\pi }{2}\right ) b}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {\sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {b^2+a \sin \left (c+d x+\frac {\pi }{2}\right ) b}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {\sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {b^2+a \sin \left (c+d x+\frac {\pi }{2}\right ) b}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {1}{2} \left (\frac {b^2 \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx+a b \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a b \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {1}{2} \left (\frac {b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {1}{2} \left (\frac {b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3286

\(\displaystyle \frac {1}{2} \left (\frac {\frac {b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 a b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\frac {b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 a b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {1}{2} \left (\frac {\frac {2 b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {2 a b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

Input:

Int[Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^2,x]
 

Output:

((-2*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(d*Sq 
rt[(a + b*Cos[c + d*x])/(a + b)]) + ((2*a*b*Sqrt[(a + b*Cos[c + d*x])/(a + 
 b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]]) + 
 (2*b^2*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b 
)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]]))/b)/2 + (Sqrt[a + b*Cos[c + d*x]] 
*Tan[c + d*x])/d
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3275
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x] 
)^(m + 1)*((c + d*Sin[e + f*x])^n/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m 
 + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^ 
(n - 1)*Simp[a*c*(m + 1) + b*d*n + (a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] 
 - b*d*(m + n + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, 
x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, 
 -1] && LtQ[0, n, 1] && IntegersQ[2*m, 2*n]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3539
Int[((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) 
 + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp 
[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x], x] - Simp[1/(b*d)   Int[Simp[a 
*c*C - A*b*d + (b*c*C + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*( 
c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b 
*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(621\) vs. \(2(197)=394\).

Time = 4.96 (sec) , antiderivative size = 622, normalized size of antiderivative = 3.16

method result size
default \(-\frac {\sqrt {\left (2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +\left (-2 a -2 b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a +\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b -\operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2, \sqrt {-\frac {2 b}{a -b}}\right ) b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a +\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, b \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )-b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2, \sqrt {-\frac {2 b}{a -b}}\right )\right )}{\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(622\)

Input:

int((a+cos(d*x+c)*b)^(1/2)*sec(d*x+c)^2,x,method=_RETURNVERBOSE)
 

Output:

-((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*cos(1/2*d* 
x+1/2*c)*sin(1/2*d*x+1/2*c)^4*b+(-2*a-2*b)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d* 
x+1/2*c)-2*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d* 
x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-Elli 
pticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a+EllipticE(cos(1/2*d*x+1/2*c 
),(-2*b/(a-b))^(1/2))*b-EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2) 
)*b)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2 
*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b)) 
^(1/2))*a-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a 
+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a+(sin(1 
/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2) 
*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-b*(sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(co 
s(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2)))/(2*cos(1/2*d*x+1/2*c)^2-1)/(-2*b*s 
in(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/( 
-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d
 

Fricas [F(-1)]

Timed out. \[ \int \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^2,x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \, dx=\int \sqrt {a + b \cos {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}\, dx \] Input:

integrate((a+b*cos(d*x+c))**(1/2)*sec(d*x+c)**2,x)
 

Output:

Integral(sqrt(a + b*cos(c + d*x))*sec(c + d*x)**2, x)
 

Maxima [F]

\[ \int \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \, dx=\int { \sqrt {b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^2,x, algorithm="maxima")
 

Output:

integrate(sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^2, x)
 

Giac [F]

\[ \int \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \, dx=\int { \sqrt {b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^2,x, algorithm="giac")
 

Output:

integrate(sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \, dx=\int \frac {\sqrt {a+b\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^2} \,d x \] Input:

int((a + b*cos(c + d*x))^(1/2)/cos(c + d*x)^2,x)
 

Output:

int((a + b*cos(c + d*x))^(1/2)/cos(c + d*x)^2, x)
 

Reduce [F]

\[ \int \sqrt {a+b \cos (c+d x)} \sec ^2(c+d x) \, dx=\int \sqrt {\cos \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )^{2}d x \] Input:

int((a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^2,x)
 

Output:

int(sqrt(cos(c + d*x)*b + a)*sec(c + d*x)**2,x)