\(\int (a+b \cos (c+d x))^{3/2} \sec ^2(c+d x) \, dx\) [498]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 209 \[ \int (a+b \cos (c+d x))^{3/2} \sec ^2(c+d x) \, dx=-\frac {a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (a^2+2 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {3 a b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {a \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d} \] Output:

-a*(a+b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^( 
1/2))/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+(a^2+2*b^2)*((a+b*cos(d*x+c))/(a+b) 
)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2)*(b/(a+b))^(1/2))/d/(a+b*cos( 
d*x+c))^(1/2)+3*a*b*((a+b*cos(d*x+c))/(a+b))^(1/2)*EllipticPi(sin(1/2*d*x+ 
1/2*c),2,2^(1/2)*(b/(a+b))^(1/2))/d/(a+b*cos(d*x+c))^(1/2)+a*(a+b*cos(d*x+ 
c))^(1/2)*tan(d*x+c)/d
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 18.83 (sec) , antiderivative size = 472, normalized size of antiderivative = 2.26 \[ \int (a+b \cos (c+d x))^{3/2} \sec ^2(c+d x) \, dx=\frac {b \left (\frac {8 b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {10 a \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 i \sqrt {\frac {b-b \cos (c+d x)}{a+b}} \sqrt {-\frac {b+b \cos (c+d x)}{a-b}} \cos (2 (c+d x)) \left (2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )-b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right ) \sin (c+d x)}{\sqrt {-\frac {1}{a+b}} \sqrt {1-\cos ^2(c+d x)} \sqrt {-\frac {a^2-b^2-2 a (a+b \cos (c+d x))+(a+b \cos (c+d x))^2}{b^2}} \left (2 a^2-b^2-4 a (a+b \cos (c+d x))+2 (a+b \cos (c+d x))^2\right )}\right )}{4 d}+\frac {a \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{d} \] Input:

Integrate[(a + b*Cos[c + d*x])^(3/2)*Sec[c + d*x]^2,x]
 

Output:

(b*((8*b*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/( 
a + b)])/Sqrt[a + b*Cos[c + d*x]] + (10*a*Sqrt[(a + b*Cos[c + d*x])/(a + b 
)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*x]] + ( 
(2*I)*Sqrt[(b - b*Cos[c + d*x])/(a + b)]*Sqrt[-((b + b*Cos[c + d*x])/(a - 
b))]*Cos[2*(c + d*x)]*(2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)] 
*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b*(2*a*EllipticF[I*ArcSinh[ 
Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] - b*Ellipt 
icPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], ( 
a + b)/(a - b)]))*Sin[c + d*x])/(Sqrt[-(a + b)^(-1)]*Sqrt[1 - Cos[c + d*x] 
^2]*Sqrt[-((a^2 - b^2 - 2*a*(a + b*Cos[c + d*x]) + (a + b*Cos[c + d*x])^2) 
/b^2)]*(2*a^2 - b^2 - 4*a*(a + b*Cos[c + d*x]) + 2*(a + b*Cos[c + d*x])^2) 
)))/(4*d) + (a*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/d
 

Rubi [A] (verified)

Time = 1.80 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.07, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.783, Rules used = {3042, 3278, 27, 3042, 3538, 25, 3042, 3134, 3042, 3132, 3481, 3042, 3142, 3042, 3140, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) (a+b \cos (c+d x))^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx\)

\(\Big \downarrow \) 3278

\(\displaystyle \int \frac {\left (2 \cos (c+d x) b^2-a \cos ^2(c+d x) b+3 a b\right ) \sec (c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \int \frac {\left (2 \cos (c+d x) b^2-a \cos ^2(c+d x) b+3 a b\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {2 \sin \left (c+d x+\frac {\pi }{2}\right ) b^2-a \sin \left (c+d x+\frac {\pi }{2}\right )^2 b+3 a b}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {1}{2} \left (-\frac {\int -\frac {\left (3 a b^2+\left (a^2+2 b^2\right ) \cos (c+d x) b\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-a \int \sqrt {a+b \cos (c+d x)}dx\right )+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {\left (3 a b^2+\left (a^2+2 b^2\right ) \cos (c+d x) b\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-a \int \sqrt {a+b \cos (c+d x)}dx\right )+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {3 a b^2+\left (a^2+2 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) b}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-a \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {3 a b^2+\left (a^2+2 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) b}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {3 a b^2+\left (a^2+2 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) b}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {3 a b^2+\left (a^2+2 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) b}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {1}{2} \left (\frac {b \left (a^2+2 b^2\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx+3 a b^2 \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {2 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {b \left (a^2+2 b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {1}{2} \left (\frac {\frac {b \left (a^2+2 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+3 a b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\frac {b \left (a^2+2 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+3 a b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {1}{2} \left (\frac {3 a b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3286

\(\displaystyle \frac {1}{2} \left (\frac {\frac {3 a b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {\frac {3 a b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {1}{2} \left (\frac {\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {6 a b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}\right )+\frac {a \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{d}\)

Input:

Int[(a + b*Cos[c + d*x])^(3/2)*Sec[c + d*x]^2,x]
 

Output:

((-2*a*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(d* 
Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + ((2*b*(a^2 + 2*b^2)*Sqrt[(a + b*Cos[ 
c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Co 
s[c + d*x]]) + (6*a*b^2*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, ( 
c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]]))/b)/2 + (a*Sqrt[a 
 + b*Cos[c + d*x]]*Tan[c + d*x])/d
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3278
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*c - a*d))*Cos[e + f*x]*(a + b*Si 
n[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 - b^2))), 
 x] + Simp[1/((m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + 
d*Sin[e + f*x])^(n - 2)*Simp[c*(a*c - b*d)*(m + 1) + d*(b*c - a*d)*(n - 1) 
+ (d*(a*c - b*d)*(m + 1) - c*(b*c - a*d)*(m + 2))*Sin[e + f*x] - d*(b*c - a 
*d)*(m + n + 1)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] 
&& NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1 
] && LtQ[1, n, 2] && IntegersQ[2*m, 2*n]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(739\) vs. \(2(209)=418\).

Time = 5.32 (sec) , antiderivative size = 740, normalized size of antiderivative = 3.54

method result size
default \(-\frac {\sqrt {\left (2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a b +\left (-2 a^{2}-2 a b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}+2 \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b^{2}-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}+b \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -3 \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2, \sqrt {-\frac {2 b}{a -b}}\right ) a b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}+2 b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, b \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -3 a b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2, \sqrt {-\frac {2 b}{a -b}}\right )\right )}{\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(740\)

Input:

int((a+cos(d*x+c)*b)^(3/2)*sec(d*x+c)^2,x,method=_RETURNVERBOSE)
 

Output:

-((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*cos(1/2*d* 
x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a*b+(-2*a^2-2*a*b)*sin(1/2*d*x+1/2*c)^2*cos( 
1/2*d*x+1/2*c)-2*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin( 
1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))* 
a^2+2*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^2-EllipticE(cos(1 
/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2+b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b 
/(a-b))^(1/2))*a-3*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a*b 
)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d* 
x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1 
/2))*a^2+2*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c) 
^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1 
/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2+(sin(1/2*d*x+1/2* 
c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*b*Elliptic 
E(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-3*a*b*(sin(1/2*d*x+1/2*c)^2)^(1 
/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(cos(1/2 
*d*x+1/2*c),2,(-2*b/(a-b))^(1/2)))/(2*cos(1/2*d*x+1/2*c)^2-1)/(-2*b*sin(1/ 
2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*si 
n(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d
 

Fricas [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{3/2} \sec ^2(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))^(3/2)*sec(d*x+c)^2,x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{3/2} \sec ^2(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))**(3/2)*sec(d*x+c)**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (a+b \cos (c+d x))^{3/2} \sec ^2(c+d x) \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{2} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(3/2)*sec(d*x+c)^2,x, algorithm="maxima")
 

Output:

integrate((b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^2, x)
 

Giac [F]

\[ \int (a+b \cos (c+d x))^{3/2} \sec ^2(c+d x) \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{2} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(3/2)*sec(d*x+c)^2,x, algorithm="giac")
 

Output:

integrate((b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{3/2} \sec ^2(c+d x) \, dx=\int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^2} \,d x \] Input:

int((a + b*cos(c + d*x))^(3/2)/cos(c + d*x)^2,x)
 

Output:

int((a + b*cos(c + d*x))^(3/2)/cos(c + d*x)^2, x)
 

Reduce [F]

\[ \int (a+b \cos (c+d x))^{3/2} \sec ^2(c+d x) \, dx=\left (\int \sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )^{2}d x \right ) a \] Input:

int((a+b*cos(d*x+c))^(3/2)*sec(d*x+c)^2,x)
 

Output:

int(sqrt(cos(c + d*x)*b + a)*cos(c + d*x)*sec(c + d*x)**2,x)*b + int(sqrt( 
cos(c + d*x)*b + a)*sec(c + d*x)**2,x)*a