\(\int \frac {\cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\) [524]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 165 \[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=-\frac {4 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{3 b^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 \left (2 a^2+b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{3 b^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 b d} \] Output:

-4/3*a*(a+b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b 
))^(1/2))/b^2/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+2/3*(2*a^2+b^2)*((a+b*cos(d 
*x+c))/(a+b))^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2)*(b/(a+b))^(1/2)) 
/b^2/d/(a+b*cos(d*x+c))^(1/2)+2/3*(a+b*cos(d*x+c))^(1/2)*sin(d*x+c)/b/d
 

Mathematica [A] (verified)

Time = 0.86 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.83 \[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {-4 a (a+b) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )+2 \left (2 a^2+b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )+2 b (a+b \cos (c+d x)) \sin (c+d x)}{3 b^2 d \sqrt {a+b \cos (c+d x)}} \] Input:

Integrate[Cos[c + d*x]^2/Sqrt[a + b*Cos[c + d*x]],x]
 

Output:

(-4*a*(a + b)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2 
*b)/(a + b)] + 2*(2*a^2 + b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*Elliptic 
F[(c + d*x)/2, (2*b)/(a + b)] + 2*b*(a + b*Cos[c + d*x])*Sin[c + d*x])/(3* 
b^2*d*Sqrt[a + b*Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.81 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.02, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.522, Rules used = {3042, 3270, 27, 3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3270

\(\displaystyle \frac {2 \int \frac {b-2 a \cos (c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx}{3 b}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {b-2 a \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{3 b}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {b-2 a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {\frac {\left (2 a^2+b^2\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {2 a \int \sqrt {a+b \cos (c+d x)}dx}{b}}{3 b}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (2 a^2+b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 a \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{3 b}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {\frac {\left (2 a^2+b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 a \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{3 b}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (2 a^2+b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 a \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{3 b}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {\frac {\left (2 a^2+b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {4 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{3 b}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {\frac {\left (2 a^2+b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{b \sqrt {a+b \cos (c+d x)}}-\frac {4 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{3 b}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (2 a^2+b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{b \sqrt {a+b \cos (c+d x)}}-\frac {4 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{3 b}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {\frac {2 \left (2 a^2+b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{b d \sqrt {a+b \cos (c+d x)}}-\frac {4 a \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{3 b}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 b d}\)

Input:

Int[Cos[c + d*x]^2/Sqrt[a + b*Cos[c + d*x]],x]
 

Output:

((-4*a*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(b* 
d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + (2*(2*a^2 + b^2)*Sqrt[(a + b*Cos[c 
 + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(b*d*Sqrt[a + b*C 
os[c + d*x]]))/(3*b) + (2*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(3*b*d)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3270
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^2, x_Symbol] :> Simp[(-d^2)*Cos[e + f*x]*((a + b*Sin[e + f*x]) 
^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))   Int[(a + b*Sin[e + f*x]) 
^m*Simp[b*(d^2*(m + 1) + c^2*(m + 2)) - d*(a*d - 2*b*c*(m + 2))*Sin[e + f*x 
], x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && Ne 
Q[a^2 - b^2, 0] &&  !LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(452\) vs. \(2(158)=316\).

Time = 4.94 (sec) , antiderivative size = 453, normalized size of antiderivative = 2.75

method result size
default \(-\frac {2 \sqrt {\left (2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} b^{2}+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a b -6 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} b^{2}+2 a^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )+b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2}+2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a b -2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a b +2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{2}\right )}{3 b^{2} \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(453\)

Input:

int(cos(d*x+c)^2/(a+cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2/3*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*cos(1/ 
2*d*x+1/2*c)^5*b^2+2*cos(1/2*d*x+1/2*c)^3*a*b-6*cos(1/2*d*x+1/2*c)^3*b^2+2 
*a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^( 
1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+b^2*(sin(1/2*d*x+1/2 
*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticF(cos(1/ 
2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos( 
1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b 
))^(1/2))*a^2+2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a- 
b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b-2*cos 
(1/2*d*x+1/2*c)*a*b+2*cos(1/2*d*x+1/2*c)*b^2)/b^2/(-2*b*sin(1/2*d*x+1/2*c) 
^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/ 
2*c)^2*b+a+b)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 398, normalized size of antiderivative = 2.41 \[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=-\frac {2 \, {\left (6 i \, \sqrt {\frac {1}{2}} a b^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) - 6 i \, \sqrt {\frac {1}{2}} a b^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) - 3 \, \sqrt {b \cos \left (d x + c\right ) + a} b^{2} \sin \left (d x + c\right ) + \sqrt {\frac {1}{2}} {\left (4 i \, a^{2} + 3 i \, b^{2}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) + \sqrt {\frac {1}{2}} {\left (-4 i \, a^{2} - 3 i \, b^{2}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right )}}{9 \, b^{3} d} \] Input:

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

-2/9*(6*I*sqrt(1/2)*a*b^(3/2)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/ 
27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/ 
27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a 
)/b)) - 6*I*sqrt(1/2)*a*b^(3/2)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, - 
8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, - 
8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2 
*a)/b)) - 3*sqrt(b*cos(d*x + c) + a)*b^2*sin(d*x + c) + sqrt(1/2)*(4*I*a^2 
 + 3*I*b^2)*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8* 
a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a)/b) + 
 sqrt(1/2)*(-4*I*a^2 - 3*I*b^2)*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3 
*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin( 
d*x + c) + 2*a)/b))/(b^3*d)
 

Sympy [F]

\[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {\cos ^{2}{\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}}}\, dx \] Input:

integrate(cos(d*x+c)**2/(a+b*cos(d*x+c))**(1/2),x)
 

Output:

Integral(cos(c + d*x)**2/sqrt(a + b*cos(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate(cos(d*x + c)^2/sqrt(b*cos(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

integrate(cos(d*x + c)^2/sqrt(b*cos(d*x + c) + a), x)
 

Mupad [B] (verification not implemented)

Time = 45.73 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.70 \[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2\,\sin \left (c+d\,x\right )\,\sqrt {a+b\,\cos \left (c+d\,x\right )}}{3\,b\,d}+\frac {2\,\sqrt {\frac {a+b\,\cos \left (c+d\,x\right )}{a+b}}\,\left (\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |\frac {2\,b}{a+b}\right )\,\left (2\,a^2+b^2\right )-2\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |\frac {2\,b}{a+b}\right )\,\left (a+b\right )\right )}{3\,b^2\,d\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \] Input:

int(cos(c + d*x)^2/(a + b*cos(c + d*x))^(1/2),x)
 

Output:

(2*sin(c + d*x)*(a + b*cos(c + d*x))^(1/2))/(3*b*d) + (2*((a + b*cos(c + d 
*x))/(a + b))^(1/2)*(ellipticF(c/2 + (d*x)/2, (2*b)/(a + b))*(2*a^2 + b^2) 
 - 2*a*ellipticE(c/2 + (d*x)/2, (2*b)/(a + b))*(a + b)))/(3*b^2*d*(a + b*c 
os(c + d*x))^(1/2))
 

Reduce [F]

\[ \int \frac {\cos ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right ) b +a}d x \] Input:

int(cos(d*x+c)^2/(a+b*cos(d*x+c))^(1/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*cos(c + d*x)**2)/(cos(c + d*x)*b + a),x)