\(\int \frac {\sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\) [528]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 206 \[ \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=-\frac {\sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}-\frac {b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{a d \sqrt {a+b \cos (c+d x)}}+\frac {\sqrt {a+b \cos (c+d x)} \tan (c+d x)}{a d} \] Output:

-(a+b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/ 
2))/a/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+((a+b*cos(d*x+c))/(a+b))^(1/2)*Inve 
rseJacobiAM(1/2*d*x+1/2*c,2^(1/2)*(b/(a+b))^(1/2))/d/(a+b*cos(d*x+c))^(1/2 
)-b*((a+b*cos(d*x+c))/(a+b))^(1/2)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2) 
*(b/(a+b))^(1/2))/a/d/(a+b*cos(d*x+c))^(1/2)+(a+b*cos(d*x+c))^(1/2)*tan(d* 
x+c)/a/d
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 17.10 (sec) , antiderivative size = 310, normalized size of antiderivative = 1.50 \[ \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {-\frac {6 b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}-\frac {2 i \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {b (1+\cos (c+d x))}{-a+b}} \csc (c+d x) \left (-2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )+b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right )}{a b \sqrt {-\frac {1}{a+b}}}+4 \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 a d} \] Input:

Integrate[Sec[c + d*x]^2/Sqrt[a + b*Cos[c + d*x]],x]
 

Output:

((-6*b*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b) 
/(a + b)])/Sqrt[a + b*Cos[c + d*x]] - ((2*I)*Sqrt[-((b*(-1 + Cos[c + d*x]) 
)/(a + b))]*Sqrt[(b*(1 + Cos[c + d*x]))/(-a + b)]*Csc[c + d*x]*(-2*a*(a - 
b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + 
 b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b* 
Cos[c + d*x]]], (a + b)/(a - b)] + b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[ 
-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a*b*Sqrt[-( 
a + b)^(-1)]) + 4*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/(4*a*d)
 

Rubi [A] (verified)

Time = 1.68 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.06, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.783, Rules used = {3042, 3281, 27, 3042, 3539, 25, 3042, 3134, 3042, 3132, 3481, 3042, 3142, 3042, 3140, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^2 \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3281

\(\displaystyle \frac {\int -\frac {\left (b \cos ^2(c+d x)+b\right ) \sec (c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx}{a}+\frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\int \frac {\left (b \cos ^2(c+d x)+b\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\int \frac {b \sin \left (c+d x+\frac {\pi }{2}\right )^2+b}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a}\)

\(\Big \downarrow \) 3539

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\int \sqrt {a+b \cos (c+d x)}dx-\frac {\int -\frac {\left (b^2-a b \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}}{2 a}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\frac {\int \frac {\left (b^2-a b \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}+\int \sqrt {a+b \cos (c+d x)}dx}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\frac {\int \frac {b^2-a b \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\frac {\int \frac {b^2-a b \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {\sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\frac {\int \frac {b^2-a b \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {\sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{\sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\frac {\int \frac {b^2-a b \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\frac {b^2 \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx-a b \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx}{b}+\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\frac {b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-a b \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\frac {b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {a b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{b}+\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\frac {b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {a b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{b}+\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\frac {b^2 \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 a b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}+\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}\)

\(\Big \downarrow \) 3286

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\frac {\frac {b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}-\frac {2 a b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}+\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\frac {\frac {b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}-\frac {2 a b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}+\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {\tan (c+d x) \sqrt {a+b \cos (c+d x)}}{a d}-\frac {\frac {\frac {2 b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}-\frac {2 a b \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}+\frac {2 \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{2 a}\)

Input:

Int[Sec[c + d*x]^2/Sqrt[a + b*Cos[c + d*x]],x]
 

Output:

-1/2*((2*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/( 
d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + ((-2*a*b*Sqrt[(a + b*Cos[c + d*x]) 
/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x 
]]) + (2*b^2*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, 
 (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]]))/b)/a + (Sqrt[a + b*Cos[c + 
d*x]]*Tan[c + d*x])/(a*d)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3281
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2 
))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n 
 + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n + 3)*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2* 
n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3539
Int[((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) 
 + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp 
[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x], x] - Simp[1/(b*d)   Int[Simp[a 
*c*C - A*b*d + (b*c*C + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*( 
c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b 
*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(531\) vs. \(2(206)=412\).

Time = 2.24 (sec) , antiderivative size = 532, normalized size of antiderivative = 2.58

method result size
default \(-\frac {\sqrt {-\left (-2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\frac {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{a \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )}{\sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )}{\sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, b \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )}{a \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2, \sqrt {-\frac {2 b}{a -b}}\right )}{a \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(532\)

Input:

int(sec(d*x+c)^2/(a+cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2 
*d*x+1/2*c)/a*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2) 
/(2*cos(1/2*d*x+1/2*c)^2-1)+(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x 
+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1 
/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-(sin(1/2*d 
*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin( 
1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1 
/2*c),(-2*b/(a-b))^(1/2))+1/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d 
*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x 
+1/2*c)^2)^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+b/a*(s 
in(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(- 
2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos( 
1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2)))/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1 
/2*c)^2*b+a+b)^(1/2)/d
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)^2/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {\sec ^{2}{\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}}}\, dx \] Input:

integrate(sec(d*x+c)**2/(a+b*cos(d*x+c))**(1/2),x)
 

Output:

Integral(sec(c + d*x)**2/sqrt(a + b*cos(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(sec(d*x+c)^2/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate(sec(d*x + c)^2/sqrt(b*cos(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(sec(d*x+c)^2/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

integrate(sec(d*x + c)^2/sqrt(b*cos(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^2\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int(1/(cos(c + d*x)^2*(a + b*cos(c + d*x))^(1/2)),x)
 

Output:

int(1/(cos(c + d*x)^2*(a + b*cos(c + d*x))^(1/2)), x)
 

Reduce [F]

\[ \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right ) b +a}d x \] Input:

int(sec(d*x+c)^2/(a+b*cos(d*x+c))^(1/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*sec(c + d*x)**2)/(cos(c + d*x)*b + a),x)