\(\int \frac {\cos ^3(c+d x)}{\sqrt {3+4 \cos (c+d x)}} \, dx\) [547]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 111 \[ \int \frac {\cos ^3(c+d x)}{\sqrt {3+4 \cos (c+d x)}} \, dx=\frac {9 \sqrt {7} E\left (\frac {1}{2} (c+d x)|\frac {8}{7}\right )}{20 d}-\frac {23 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {8}{7}\right )}{20 \sqrt {7} d}-\frac {\sqrt {3+4 \cos (c+d x)} \sin (c+d x)}{10 d}+\frac {\cos (c+d x) \sqrt {3+4 \cos (c+d x)} \sin (c+d x)}{10 d} \] Output:

9/20*EllipticE(sin(1/2*d*x+1/2*c),2/7*14^(1/2))*7^(1/2)/d-23/140*InverseJa 
cobiAM(1/2*d*x+1/2*c,2/7*14^(1/2))*7^(1/2)/d-1/10*(3+4*cos(d*x+c))^(1/2)*s 
in(d*x+c)/d+1/10*cos(d*x+c)*(3+4*cos(d*x+c))^(1/2)*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 0.43 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.73 \[ \int \frac {\cos ^3(c+d x)}{\sqrt {3+4 \cos (c+d x)}} \, dx=\frac {63 \sqrt {7} E\left (\frac {1}{2} (c+d x)|\frac {8}{7}\right )-23 \sqrt {7} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {8}{7}\right )+7 \sqrt {3+4 \cos (c+d x)} (-2 \sin (c+d x)+\sin (2 (c+d x)))}{140 d} \] Input:

Integrate[Cos[c + d*x]^3/Sqrt[3 + 4*Cos[c + d*x]],x]
 

Output:

(63*Sqrt[7]*EllipticE[(c + d*x)/2, 8/7] - 23*Sqrt[7]*EllipticF[(c + d*x)/2 
, 8/7] + 7*Sqrt[3 + 4*Cos[c + d*x]]*(-2*Sin[c + d*x] + Sin[2*(c + d*x)]))/ 
(140*d)
 

Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.09, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 3272, 27, 3042, 3502, 27, 3042, 3231, 3042, 3132, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^3(c+d x)}{\sqrt {4 \cos (c+d x)+3}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^3}{\sqrt {4 \sin \left (c+d x+\frac {\pi }{2}\right )+3}}dx\)

\(\Big \downarrow \) 3272

\(\displaystyle \frac {1}{10} \int \frac {3 \left (-2 \cos ^2(c+d x)+2 \cos (c+d x)+1\right )}{\sqrt {4 \cos (c+d x)+3}}dx+\frac {\sin (c+d x) \cos (c+d x) \sqrt {4 \cos (c+d x)+3}}{10 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3}{10} \int \frac {-2 \cos ^2(c+d x)+2 \cos (c+d x)+1}{\sqrt {4 \cos (c+d x)+3}}dx+\frac {\sin (c+d x) \cos (c+d x) \sqrt {4 \cos (c+d x)+3}}{10 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3}{10} \int \frac {-2 \sin \left (c+d x+\frac {\pi }{2}\right )^2+2 \sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sqrt {4 \sin \left (c+d x+\frac {\pi }{2}\right )+3}}dx+\frac {\sin (c+d x) \cos (c+d x) \sqrt {4 \cos (c+d x)+3}}{10 d}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {3}{10} \left (\frac {1}{6} \int \frac {2 (9 \cos (c+d x)+1)}{\sqrt {4 \cos (c+d x)+3}}dx-\frac {\sin (c+d x) \sqrt {4 \cos (c+d x)+3}}{3 d}\right )+\frac {\sin (c+d x) \cos (c+d x) \sqrt {4 \cos (c+d x)+3}}{10 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3}{10} \left (\frac {1}{3} \int \frac {9 \cos (c+d x)+1}{\sqrt {4 \cos (c+d x)+3}}dx-\frac {\sin (c+d x) \sqrt {4 \cos (c+d x)+3}}{3 d}\right )+\frac {\sin (c+d x) \cos (c+d x) \sqrt {4 \cos (c+d x)+3}}{10 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3}{10} \left (\frac {1}{3} \int \frac {9 \sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sqrt {4 \sin \left (c+d x+\frac {\pi }{2}\right )+3}}dx-\frac {\sin (c+d x) \sqrt {4 \cos (c+d x)+3}}{3 d}\right )+\frac {\sin (c+d x) \cos (c+d x) \sqrt {4 \cos (c+d x)+3}}{10 d}\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {3}{10} \left (\frac {1}{3} \left (\frac {9}{4} \int \sqrt {4 \cos (c+d x)+3}dx-\frac {23}{4} \int \frac {1}{\sqrt {4 \cos (c+d x)+3}}dx\right )-\frac {\sin (c+d x) \sqrt {4 \cos (c+d x)+3}}{3 d}\right )+\frac {\sin (c+d x) \cos (c+d x) \sqrt {4 \cos (c+d x)+3}}{10 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3}{10} \left (\frac {1}{3} \left (\frac {9}{4} \int \sqrt {4 \sin \left (c+d x+\frac {\pi }{2}\right )+3}dx-\frac {23}{4} \int \frac {1}{\sqrt {4 \sin \left (c+d x+\frac {\pi }{2}\right )+3}}dx\right )-\frac {\sin (c+d x) \sqrt {4 \cos (c+d x)+3}}{3 d}\right )+\frac {\sin (c+d x) \cos (c+d x) \sqrt {4 \cos (c+d x)+3}}{10 d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {3}{10} \left (\frac {1}{3} \left (\frac {9 \sqrt {7} E\left (\frac {1}{2} (c+d x)|\frac {8}{7}\right )}{2 d}-\frac {23}{4} \int \frac {1}{\sqrt {4 \sin \left (c+d x+\frac {\pi }{2}\right )+3}}dx\right )-\frac {\sin (c+d x) \sqrt {4 \cos (c+d x)+3}}{3 d}\right )+\frac {\sin (c+d x) \cos (c+d x) \sqrt {4 \cos (c+d x)+3}}{10 d}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {\sin (c+d x) \cos (c+d x) \sqrt {4 \cos (c+d x)+3}}{10 d}+\frac {3}{10} \left (\frac {1}{3} \left (\frac {9 \sqrt {7} E\left (\frac {1}{2} (c+d x)|\frac {8}{7}\right )}{2 d}-\frac {23 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {8}{7}\right )}{2 \sqrt {7} d}\right )-\frac {\sin (c+d x) \sqrt {4 \cos (c+d x)+3}}{3 d}\right )\)

Input:

Int[Cos[c + d*x]^3/Sqrt[3 + 4*Cos[c + d*x]],x]
 

Output:

(Cos[c + d*x]*Sqrt[3 + 4*Cos[c + d*x]]*Sin[c + d*x])/(10*d) + (3*(((9*Sqrt 
[7]*EllipticE[(c + d*x)/2, 8/7])/(2*d) - (23*EllipticF[(c + d*x)/2, 8/7])/ 
(2*Sqrt[7]*d))/3 - (Sqrt[3 + 4*Cos[c + d*x]]*Sin[c + d*x])/(3*d)))/10
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3272
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Simp[1/(d*(m 
 + n))   Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^n*Simp[a^3*d 
*(m + n) + b^2*(b*c*(m - 2) + a*d*(n + 1)) - b*(a*b*c - b^2*d*(m + n - 1) - 
 3*a^2*d*(m + n))*Sin[e + f*x] - b^2*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && (IntegerQ[m 
] || IntegersQ[2*m, 2*n]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[a, 0] 
&& NeQ[c, 0])))
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(230\) vs. \(2(98)=196\).

Time = 4.28 (sec) , antiderivative size = 231, normalized size of antiderivative = 2.08

method result size
default \(-\frac {\sqrt {\left (8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-64 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+56 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-23 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-7}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2 \sqrt {2}\right )-9 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-7}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2 \sqrt {2}\right )\right )}{20 \sqrt {-8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+7 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(231\)

Input:

int(cos(d*x+c)^3/(3+4*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/20*((8*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-64*cos(1/2 
*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+56*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c 
)-23*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(8*sin(1/2*d*x+1/2*c)^2-7)^(1/2)*Ellipti 
cF(cos(1/2*d*x+1/2*c),2*2^(1/2))-9*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(8*sin(1/2 
*d*x+1/2*c)^2-7)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2*2^(1/2)))/(-8*sin(1/ 
2*d*x+1/2*c)^4+7*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(8*cos(1/2 
*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.23 \[ \int \frac {\cos ^3(c+d x)}{\sqrt {3+4 \cos (c+d x)}} \, dx=\frac {4 \, \sqrt {4 \, \cos \left (d x + c\right ) + 3} {\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right ) + 7 i \, \sqrt {2} {\rm weierstrassPInverse}\left (-1, 1, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right ) + \frac {1}{2}\right ) - 7 i \, \sqrt {2} {\rm weierstrassPInverse}\left (-1, 1, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right ) + \frac {1}{2}\right ) + 18 i \, \sqrt {2} {\rm weierstrassZeta}\left (-1, 1, {\rm weierstrassPInverse}\left (-1, 1, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right ) + \frac {1}{2}\right )\right ) - 18 i \, \sqrt {2} {\rm weierstrassZeta}\left (-1, 1, {\rm weierstrassPInverse}\left (-1, 1, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right ) + \frac {1}{2}\right )\right )}{40 \, d} \] Input:

integrate(cos(d*x+c)^3/(3+4*cos(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

1/40*(4*sqrt(4*cos(d*x + c) + 3)*(cos(d*x + c) - 1)*sin(d*x + c) + 7*I*sqr 
t(2)*weierstrassPInverse(-1, 1, cos(d*x + c) + I*sin(d*x + c) + 1/2) - 7*I 
*sqrt(2)*weierstrassPInverse(-1, 1, cos(d*x + c) - I*sin(d*x + c) + 1/2) + 
 18*I*sqrt(2)*weierstrassZeta(-1, 1, weierstrassPInverse(-1, 1, cos(d*x + 
c) + I*sin(d*x + c) + 1/2)) - 18*I*sqrt(2)*weierstrassZeta(-1, 1, weierstr 
assPInverse(-1, 1, cos(d*x + c) - I*sin(d*x + c) + 1/2)))/d
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x)}{\sqrt {3+4 \cos (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**3/(3+4*cos(d*x+c))**(1/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^3(c+d x)}{\sqrt {3+4 \cos (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{3}}{\sqrt {4 \, \cos \left (d x + c\right ) + 3}} \,d x } \] Input:

integrate(cos(d*x+c)^3/(3+4*cos(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate(cos(d*x + c)^3/sqrt(4*cos(d*x + c) + 3), x)
 

Giac [F]

\[ \int \frac {\cos ^3(c+d x)}{\sqrt {3+4 \cos (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{3}}{\sqrt {4 \, \cos \left (d x + c\right ) + 3}} \,d x } \] Input:

integrate(cos(d*x+c)^3/(3+4*cos(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

integrate(cos(d*x + c)^3/sqrt(4*cos(d*x + c) + 3), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x)}{\sqrt {3+4 \cos (c+d x)}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^3}{\sqrt {4\,\cos \left (c+d\,x\right )+3}} \,d x \] Input:

int(cos(c + d*x)^3/(4*cos(c + d*x) + 3)^(1/2),x)
                                                                                    
                                                                                    
 

Output:

int(cos(c + d*x)^3/(4*cos(c + d*x) + 3)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\cos ^3(c+d x)}{\sqrt {3+4 \cos (c+d x)}} \, dx=\int \frac {\sqrt {4 \cos \left (d x +c \right )+3}\, \cos \left (d x +c \right )^{3}}{4 \cos \left (d x +c \right )+3}d x \] Input:

int(cos(d*x+c)^3/(3+4*cos(d*x+c))^(1/2),x)
 

Output:

int((sqrt(4*cos(c + d*x) + 3)*cos(c + d*x)**3)/(4*cos(c + d*x) + 3),x)