\(\int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [578]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 124 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 a \left (a^2-3 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 b \left (9 a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}-\frac {2 b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a^2 (a+b \cos (c+d x)) \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \] Output:

-2*a*(a^2-3*b^2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*b*(9*a^2+b^2) 
*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d-2/3*b*(3*a^2-b^2)*cos(d*x+c)^(1/ 
2)*sin(d*x+c)/d+2*a^2*(a+b*cos(d*x+c))*sin(d*x+c)/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.00 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.69 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \left (-3 \left (a^3-3 a b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\left (9 a^2 b+b^3\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {\left (3 a^3+b^3 \cos (c+d x)\right ) \sin (c+d x)}{\sqrt {\cos (c+d x)}}\right )}{3 d} \] Input:

Integrate[(a + b*Cos[c + d*x])^3/Cos[c + d*x]^(3/2),x]
 

Output:

(2*(-3*(a^3 - 3*a*b^2)*EllipticE[(c + d*x)/2, 2] + (9*a^2*b + b^3)*Ellipti 
cF[(c + d*x)/2, 2] + ((3*a^3 + b^3*Cos[c + d*x])*Sin[c + d*x])/Sqrt[Cos[c 
+ d*x]]))/(3*d)
 

Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.02, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 3271, 27, 3042, 3502, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^3}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3271

\(\displaystyle 2 \int \frac {4 b a^2-\left (a^2-3 b^2\right ) \cos (c+d x) a-b \left (3 a^2-b^2\right ) \cos ^2(c+d x)}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {4 b a^2-\left (a^2-3 b^2\right ) \cos (c+d x) a-b \left (3 a^2-b^2\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {4 b a^2-\left (a^2-3 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a-b \left (3 a^2-b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {2}{3} \int \frac {b \left (9 a^2+b^2\right )-3 a \left (a^2-3 b^2\right ) \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx-\frac {2 b \left (3 a^2-b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {b \left (9 a^2+b^2\right )-3 a \left (a^2-3 b^2\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx-\frac {2 b \left (3 a^2-b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {b \left (9 a^2+b^2\right )-3 a \left (a^2-3 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 b \left (3 a^2-b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{3} \left (b \left (9 a^2+b^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)}}dx-3 a \left (a^2-3 b^2\right ) \int \sqrt {\cos (c+d x)}dx\right )-\frac {2 b \left (3 a^2-b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (b \left (9 a^2+b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-3 a \left (a^2-3 b^2\right ) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )-\frac {2 b \left (3 a^2-b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{3} \left (b \left (9 a^2+b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {6 a \left (a^2-3 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-\frac {2 b \left (3 a^2-b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {2 b \left (3 a^2-b^2\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {1}{3} \left (\frac {2 b \left (9 a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {6 a \left (a^2-3 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{d \sqrt {\cos (c+d x)}}\)

Input:

Int[(a + b*Cos[c + d*x])^3/Cos[c + d*x]^(3/2),x]
 

Output:

((-6*a*(a^2 - 3*b^2)*EllipticE[(c + d*x)/2, 2])/d + (2*b*(9*a^2 + b^2)*Ell 
ipticF[(c + d*x)/2, 2])/d)/3 - (2*b*(3*a^2 - b^2)*Sqrt[Cos[c + d*x]]*Sin[c 
 + d*x])/(3*d) + (2*a^2*(a + b*Cos[c + d*x])*Sin[c + d*x])/(d*Sqrt[Cos[c + 
 d*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3271
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*Co 
s[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f* 
(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin 
[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^ 
2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 + c*d*(a^2 
+ b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - 
 d^2) - m*(b*c - a*d)^2 + d*n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x] 
, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - 
b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || 
IntegersQ[2*m, 2*n])
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(302\) vs. \(2(119)=238\).

Time = 8.67 (sec) , antiderivative size = 303, normalized size of antiderivative = 2.44

method result size
default \(-\frac {2 \left (4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b^{3}-6 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a^{3}-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b^{3}+9 a^{2} b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{3}-9 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a \,b^{2}\right )}{3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(303\)
parts \(-\frac {2 a^{3} \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 b^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {6 a^{2} b \,\operatorname {InverseJacobiAM}\left (\frac {d x}{2}+\frac {c}{2}, \sqrt {2}\right )}{d}+\frac {6 b^{2} a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(524\)

Input:

int((a+cos(d*x+c)*b)^3/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-2/3*(4*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*b^3-6*cos(1/2*d*x+1/2*c)*s 
in(1/2*d*x+1/2*c)^2*a^3-2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b^3+9*a^ 
2*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic 
F(cos(1/2*d*x+1/2*c),2^(1/2))+b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2* 
d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*(sin(1/2*d*x 
+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/ 
2*c),2^(1/2))*a^3-9*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1 
)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2)/sin(1/2*d*x+1/2*c)/(2 
*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.73 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (-9 i \, a^{2} b - i \, b^{3}\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (9 i \, a^{2} b + i \, b^{3}\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (i \, a^{3} - 3 i \, a b^{2}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (-i \, a^{3} + 3 i \, a b^{2}\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (b^{3} \cos \left (d x + c\right ) + 3 \, a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )} \] Input:

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(3/2),x, algorithm="fricas")
 

Output:

1/3*(sqrt(2)*(-9*I*a^2*b - I*b^3)*cos(d*x + c)*weierstrassPInverse(-4, 0, 
cos(d*x + c) + I*sin(d*x + c)) + sqrt(2)*(9*I*a^2*b + I*b^3)*cos(d*x + c)* 
weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(I*a 
^3 - 3*I*a*b^2)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4 
, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*(-I*a^3 + 3*I*a*b^2)*cos( 
d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - 
I*sin(d*x + c))) + 2*(b^3*cos(d*x + c) + 3*a^3)*sqrt(cos(d*x + c))*sin(d*x 
 + c))/(d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))**3/cos(d*x+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(3/2),x, algorithm="maxima")
 

Output:

integrate((b*cos(d*x + c) + a)^3/cos(d*x + c)^(3/2), x)
 

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(3/2),x, algorithm="giac")
 

Output:

integrate((b*cos(d*x + c) + a)^3/cos(d*x + c)^(3/2), x)
 

Mupad [B] (verification not implemented)

Time = 42.19 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.00 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2\,b^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3\,d}+\frac {6\,a\,b^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,a^2\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,b^3\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3\,d}+\frac {2\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int((a + b*cos(c + d*x))^3/cos(c + d*x)^(3/2),x)
 

Output:

(2*b^3*ellipticF(c/2 + (d*x)/2, 2))/(3*d) + (6*a*b^2*ellipticE(c/2 + (d*x) 
/2, 2))/d + (6*a^2*b*ellipticF(c/2 + (d*x)/2, 2))/d + (2*b^3*cos(c + d*x)^ 
(1/2)*sin(c + d*x))/(3*d) + (2*a^3*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4 
, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=3 \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) a^{2} b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) a^{3}+3 \left (\int \sqrt {\cos \left (d x +c \right )}d x \right ) a \,b^{2}+\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) b^{3} \] Input:

int((a+b*cos(d*x+c))^3/cos(d*x+c)^(3/2),x)
 

Output:

3*int(sqrt(cos(c + d*x))/cos(c + d*x),x)*a**2*b + int(sqrt(cos(c + d*x))/c 
os(c + d*x)**2,x)*a**3 + 3*int(sqrt(cos(c + d*x)),x)*a*b**2 + int(sqrt(cos 
(c + d*x))*cos(c + d*x),x)*b**3