\(\int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\) [581]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 194 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {2 b \left (9 a^2+5 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a \left (5 a^2+21 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {32 a^2 b \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a \left (5 a^2+21 b^2\right ) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 b \left (9 a^2+5 b^2\right ) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 (a+b \cos (c+d x)) \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)} \] Output:

-2/5*b*(9*a^2+5*b^2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/21*a*(5*a^2 
+21*b^2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+32/35*a^2*b*sin(d*x+c)/d 
/cos(d*x+c)^(5/2)+2/21*a*(5*a^2+21*b^2)*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2/5* 
b*(9*a^2+5*b^2)*sin(d*x+c)/d/cos(d*x+c)^(1/2)+2/7*a^2*(a+b*cos(d*x+c))*sin 
(d*x+c)/d/cos(d*x+c)^(7/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.54 (sec) , antiderivative size = 177, normalized size of antiderivative = 0.91 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {-42 b \left (9 a^2+5 b^2\right ) \cos ^{\frac {5}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 a \left (5 a^2+21 b^2\right ) \cos ^{\frac {5}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+126 a^2 b \sin (c+d x)+378 a^2 b \cos ^2(c+d x) \sin (c+d x)+210 b^3 \cos ^2(c+d x) \sin (c+d x)+25 a^3 \sin (2 (c+d x))+105 a b^2 \sin (2 (c+d x))+30 a^3 \tan (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x)} \] Input:

Integrate[(a + b*Cos[c + d*x])^3/Cos[c + d*x]^(9/2),x]
 

Output:

(-42*b*(9*a^2 + 5*b^2)*Cos[c + d*x]^(5/2)*EllipticE[(c + d*x)/2, 2] + 10*a 
*(5*a^2 + 21*b^2)*Cos[c + d*x]^(5/2)*EllipticF[(c + d*x)/2, 2] + 126*a^2*b 
*Sin[c + d*x] + 378*a^2*b*Cos[c + d*x]^2*Sin[c + d*x] + 210*b^3*Cos[c + d* 
x]^2*Sin[c + d*x] + 25*a^3*Sin[2*(c + d*x)] + 105*a*b^2*Sin[2*(c + d*x)] + 
 30*a^3*Tan[c + d*x])/(105*d*Cos[c + d*x]^(5/2))
 

Rubi [A] (verified)

Time = 0.83 (sec) , antiderivative size = 182, normalized size of antiderivative = 0.94, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.565, Rules used = {3042, 3271, 27, 3042, 3500, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^3}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 3271

\(\displaystyle \frac {2}{7} \int \frac {16 b a^2+\left (5 a^2+21 b^2\right ) \cos (c+d x) a+b \left (3 a^2+7 b^2\right ) \cos ^2(c+d x)}{2 \cos ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \int \frac {16 b a^2+\left (5 a^2+21 b^2\right ) \cos (c+d x) a+b \left (3 a^2+7 b^2\right ) \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \int \frac {16 b a^2+\left (5 a^2+21 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a+b \left (3 a^2+7 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{7} \left (\frac {2}{5} \int \frac {5 a \left (5 a^2+21 b^2\right )+7 b \left (9 a^2+5 b^2\right ) \cos (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x)}dx+\frac {32 a^2 b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \int \frac {5 a \left (5 a^2+21 b^2\right )+7 b \left (9 a^2+5 b^2\right ) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {32 a^2 b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \int \frac {5 a \left (5 a^2+21 b^2\right )+7 b \left (9 a^2+5 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {32 a^2 b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a \left (5 a^2+21 b^2\right ) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx+7 b \left (9 a^2+5 b^2\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx\right )+\frac {32 a^2 b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a \left (5 a^2+21 b^2\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+7 b \left (9 a^2+5 b^2\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )+\frac {32 a^2 b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a \left (5 a^2+21 b^2\right ) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 b \left (9 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\right )+\frac {32 a^2 b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a \left (5 a^2+21 b^2\right ) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 b \left (9 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )+\frac {32 a^2 b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a \left (5 a^2+21 b^2\right ) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 b \left (9 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {32 a^2 b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a \left (5 a^2+21 b^2\right ) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 b \left (9 a^2+5 b^2\right ) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {32 a^2 b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a^2 \sin (c+d x) (a+b \cos (c+d x))}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

Input:

Int[(a + b*Cos[c + d*x])^3/Cos[c + d*x]^(9/2),x]
 

Output:

(2*a^2*(a + b*Cos[c + d*x])*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)) + ((32* 
a^2*b*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (5*a*(5*a^2 + 21*b^2)*((2*E 
llipticF[(c + d*x)/2, 2])/(3*d) + (2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2) 
)) + 7*b*(9*a^2 + 5*b^2)*((-2*EllipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d* 
x])/(d*Sqrt[Cos[c + d*x]])))/5)/7
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3271
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*Co 
s[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f* 
(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin 
[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^ 
2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 + c*d*(a^2 
+ b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - 
 d^2) - m*(b*c - a*d)^2 + d*n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x] 
, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - 
b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || 
IntegersQ[2*m, 2*n])
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(819\) vs. \(2(177)=354\).

Time = 11.18 (sec) , antiderivative size = 820, normalized size of antiderivative = 4.23

method result size
default \(\text {Expression too large to display}\) \(820\)
parts \(\text {Expression too large to display}\) \(1008\)

Input:

int((a+cos(d*x+c)*b)^3/cos(d*x+c)^(9/2),x,method=_RETURNVERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*a^3*(-1/56*c 
os(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(co 
s(1/2*d*x+1/2*c)^2-1/2)^4-5/42*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4 
+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+5/21*(sin(1/2*d* 
x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c) 
^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+2*b^ 
3/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4 
+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(s 
in(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos( 
1/2*d*x+1/2*c),2^(1/2)))+6/5*a^2*b/sin(1/2*d*x+1/2*c)^2/(8*sin(1/2*d*x+1/2 
*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)*(24*cos(1/2*d*x+1/ 
2*c)*sin(1/2*d*x+1/2*c)^6-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/ 
2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^ 
4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12*EllipticE(cos(1/2*d*x+1/2* 
c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)* 
sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(sin(1/2* 
d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x 
+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+6*b 
^2*a*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^ 
2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*...
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.39 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {5 \, \sqrt {2} {\left (5 i \, a^{3} + 21 i \, a b^{2}\right )} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-5 i \, a^{3} - 21 i \, a b^{2}\right )} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, \sqrt {2} {\left (9 i \, a^{2} b + 5 i \, b^{3}\right )} \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, \sqrt {2} {\left (-9 i \, a^{2} b - 5 i \, b^{3}\right )} \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, {\left (63 \, a^{2} b \cos \left (d x + c\right ) + 21 \, {\left (9 \, a^{2} b + 5 \, b^{3}\right )} \cos \left (d x + c\right )^{3} + 15 \, a^{3} + 5 \, {\left (5 \, a^{3} + 21 \, a b^{2}\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, d \cos \left (d x + c\right )^{4}} \] Input:

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(9/2),x, algorithm="fricas")
 

Output:

-1/105*(5*sqrt(2)*(5*I*a^3 + 21*I*a*b^2)*cos(d*x + c)^4*weierstrassPInvers 
e(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*sqrt(2)*(-5*I*a^3 - 21*I*a*b^2 
)*cos(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) 
 + 21*sqrt(2)*(9*I*a^2*b + 5*I*b^3)*cos(d*x + c)^4*weierstrassZeta(-4, 0, 
weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*sqrt(2)*(- 
9*I*a^2*b - 5*I*b^3)*cos(d*x + c)^4*weierstrassZeta(-4, 0, weierstrassPInv 
erse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(63*a^2*b*cos(d*x + c) + 2 
1*(9*a^2*b + 5*b^3)*cos(d*x + c)^3 + 15*a^3 + 5*(5*a^3 + 21*a*b^2)*cos(d*x 
 + c)^2)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^4)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))**3/cos(d*x+c)**(9/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(9/2),x, algorithm="maxima")
 

Output:

integrate((b*cos(d*x + c) + a)^3/cos(d*x + c)^(9/2), x)
 

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(9/2),x, algorithm="giac")
 

Output:

integrate((b*cos(d*x + c) + a)^3/cos(d*x + c)^(9/2), x)
 

Mupad [B] (verification not implemented)

Time = 44.24 (sec) , antiderivative size = 147, normalized size of antiderivative = 0.76 \[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {\frac {2\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {7}{4},\frac {1}{2};\ -\frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7}+2\,b^3\,{\cos \left (c+d\,x\right )}^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )+\frac {6\,a^2\,b\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5}+2\,a\,b^2\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}} \] Input:

int((a + b*cos(c + d*x))^3/cos(c + d*x)^(9/2),x)
 

Output:

((2*a^3*sin(c + d*x)*hypergeom([-7/4, 1/2], -3/4, cos(c + d*x)^2))/7 + 2*b 
^3*cos(c + d*x)^3*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2) 
 + (6*a^2*b*cos(c + d*x)*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + 
 d*x)^2))/5 + 2*a*b^2*cos(c + d*x)^2*sin(c + d*x)*hypergeom([-3/4, 1/2], 1 
/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(7/2)*(1 - cos(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5}}d x \right ) a^{3}+3 \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x \right ) a^{2} b +3 \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) a \,b^{2}+\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) b^{3} \] Input:

int((a+b*cos(d*x+c))^3/cos(d*x+c)^(9/2),x)
 

Output:

int(sqrt(cos(c + d*x))/cos(c + d*x)**5,x)*a**3 + 3*int(sqrt(cos(c + d*x))/ 
cos(c + d*x)**4,x)*a**2*b + 3*int(sqrt(cos(c + d*x))/cos(c + d*x)**3,x)*a* 
b**2 + int(sqrt(cos(c + d*x))/cos(c + d*x)**2,x)*b**3