\(\int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\) [587]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 128 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\frac {2 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}+\frac {2 b^2 \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 (a+b) d}+\frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 b \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}} \] Output:

2*b*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+2/3*InverseJacobiAM(1/2*d* 
x+1/2*c,2^(1/2))/a/d+2*b^2*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2) 
)/a^2/(a+b)/d+2/3*sin(d*x+c)/a/d/cos(d*x+c)^(3/2)-2*b*sin(d*x+c)/a^2/d/cos 
(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 4.77 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.64 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\frac {\frac {2 \left (2 a^2+9 b^2\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+8 a \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )+\frac {4 (a-3 b \cos (c+d x)) \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}+\frac {6 \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a \sqrt {\sin ^2(c+d x)}}}{6 a^2 d} \] Input:

Integrate[1/(Cos[c + d*x]^(5/2)*(a + b*Cos[c + d*x])),x]
 

Output:

((2*(2*a^2 + 9*b^2)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + 8 
*a*(2*EllipticF[(c + d*x)/2, 2] - (2*a*EllipticPi[(2*b)/(a + b), (c + d*x) 
/2, 2])/(a + b)) + (4*(a - 3*b*Cos[c + d*x])*Sin[c + d*x])/Cos[c + d*x]^(3 
/2) + (6*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*E 
llipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a 
), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*Sqrt[Sin[c + d*x]^2]) 
)/(6*a^2*d)
 

Rubi [A] (verified)

Time = 1.21 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.08, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.652, Rules used = {3042, 3281, 27, 3042, 3534, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 3281

\(\displaystyle \frac {2 \int -\frac {-b \cos ^2(c+d x)-a \cos (c+d x)+3 b}{2 \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}dx}{3 a}+\frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {-b \cos ^2(c+d x)-a \cos (c+d x)+3 b}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}dx}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {-b \sin \left (c+d x+\frac {\pi }{2}\right )^2-a \sin \left (c+d x+\frac {\pi }{2}\right )+3 b}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{3 a}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {2 \int -\frac {a^2+4 b \cos (c+d x) a+3 b^2+3 b^2 \cos ^2(c+d x)}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}+\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}}{3 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a^2+4 b \cos (c+d x) a+3 b^2+3 b^2 \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a^2+4 b \sin \left (c+d x+\frac {\pi }{2}\right ) a+3 b^2+3 b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}}{3 a}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {3 b \int \sqrt {\cos (c+d x)}dx-\frac {\int -\frac {a \cos (c+d x) b^2+\left (a^2+3 b^2\right ) b}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{a}}{3 a}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {a \cos (c+d x) b^2+\left (a^2+3 b^2\right ) b}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}+3 b \int \sqrt {\cos (c+d x)}dx}{a}}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {a \sin \left (c+d x+\frac {\pi }{2}\right ) b^2+\left (a^2+3 b^2\right ) b}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+3 b \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{3 a}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {a \sin \left (c+d x+\frac {\pi }{2}\right ) b^2+\left (a^2+3 b^2\right ) b}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+\frac {6 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{3 a}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {3 b^3 \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx+a b \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}+\frac {6 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {3 b^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx+a b \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {6 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{3 a}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {3 b^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {2 a b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}+\frac {6 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{3 a}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\frac {6 b^3 \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{d (a+b)}+\frac {2 a b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}+\frac {6 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{3 a}\)

Input:

Int[1/(Cos[c + d*x]^(5/2)*(a + b*Cos[c + d*x])),x]
 

Output:

(2*Sin[c + d*x])/(3*a*d*Cos[c + d*x]^(3/2)) - (-(((6*b*EllipticE[(c + d*x) 
/2, 2])/d + ((2*a*b*EllipticF[(c + d*x)/2, 2])/d + (6*b^3*EllipticPi[(2*b) 
/(a + b), (c + d*x)/2, 2])/((a + b)*d))/b)/a) + (6*b*Sin[c + d*x])/(a*d*Sq 
rt[Cos[c + d*x]]))/(3*a)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3281
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2 
))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n 
 + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n + 3)*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2* 
n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(424\) vs. \(2(125)=250\).

Time = 5.41 (sec) , antiderivative size = 425, normalized size of antiderivative = 3.32

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}}{a}-\frac {4 b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{a^{2} \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {2 b \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(425\)

Input:

int(1/cos(d*x+c)^(5/2)/(a+cos(d*x+c)*b),x,method=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/a*(-1/6*cos( 
1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1 
/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/ 
2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellip 
ticF(cos(1/2*d*x+1/2*c),2^(1/2)))-4*b^3/a^2/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/ 
2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+s 
in(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2 
))-2*b/a^2/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x 
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+ 
1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellip 
ticE(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c 
)^2-1)^(1/2)/d
 

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\text {Timed out} \] Input:

integrate(1/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\text {Timed out} \] Input:

integrate(1/cos(d*x+c)**(5/2)/(a+b*cos(d*x+c)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")
 

Output:

integrate(1/((b*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), x)
 

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x, algorithm="giac")
 

Output:

integrate(1/((b*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{5/2}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \] Input:

int(1/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))),x)
 

Output:

int(1/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))), x)
 

Reduce [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4} b +\cos \left (d x +c \right )^{3} a}d x \] Input:

int(1/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)**4*b + cos(c + d*x)**3*a),x)