\(\int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx\) [589]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 185 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {\left (3 a^2-2 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 \left (a^2-b^2\right ) d}-\frac {a \left (3 a^2-4 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^3 \left (a^2-b^2\right ) d}+\frac {a^2 \left (3 a^2-5 b^2\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{(a-b) b^3 (a+b)^2 d}-\frac {a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))} \] Output:

(3*a^2-2*b^2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b^2/(a^2-b^2)/d-a*(3*a 
^2-4*b^2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/b^3/(a^2-b^2)/d+a^2*(3*a^ 
2-5*b^2)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/(a-b)/b^3/(a+b)^ 
2/d-a^2*cos(d*x+c)^(1/2)*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))
 

Mathematica [A] (warning: unable to verify)

Time = 2.12 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.36 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\frac {\frac {4 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{\left (-a^2+b^2\right ) (a+b \cos (c+d x))}+\frac {\frac {2 \left (a^2-2 b^2\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+4 a \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )+\frac {2 \left (3 a^2-2 b^2\right ) \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a b^2 \sqrt {\sin ^2(c+d x)}}}{(a-b) (a+b)}}{4 b d} \] Input:

Integrate[Cos[c + d*x]^(5/2)/(a + b*Cos[c + d*x])^2,x]
 

Output:

((4*a^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((-a^2 + b^2)*(a + b*Cos[c + d*x] 
)) + ((2*(a^2 - 2*b^2)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) 
+ 4*a*(2*EllipticF[(c + d*x)/2, 2] - (2*a*EllipticPi[(2*b)/(a + b), (c + d 
*x)/2, 2])/(a + b)) + (2*(3*a^2 - 2*b^2)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos 
[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 
 (-2*a^2 + b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c 
+ d*x])/(a*b^2*Sqrt[Sin[c + d*x]^2]))/((a - b)*(a + b)))/(4*b*d)
 

Rubi [A] (verified)

Time = 1.11 (sec) , antiderivative size = 182, normalized size of antiderivative = 0.98, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.522, Rules used = {3042, 3271, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 3271

\(\displaystyle -\frac {\int \frac {a^2-2 b \cos (c+d x) a-\left (3 a^2-2 b^2\right ) \cos ^2(c+d x)}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {a^2-2 b \cos (c+d x) a-\left (3 a^2-2 b^2\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {a^2-2 b \sin \left (c+d x+\frac {\pi }{2}\right ) a+\left (2 b^2-3 a^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3538

\(\displaystyle -\frac {-\frac {\left (3 a^2-2 b^2\right ) \int \sqrt {\cos (c+d x)}dx}{b}-\frac {\int -\frac {b a^2+\left (3 a^2-4 b^2\right ) \cos (c+d x) a}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {\int \frac {b a^2+\left (3 a^2-4 b^2\right ) \cos (c+d x) a}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}-\frac {\left (3 a^2-2 b^2\right ) \int \sqrt {\cos (c+d x)}dx}{b}}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {b a^2+\left (3 a^2-4 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}-\frac {\left (3 a^2-2 b^2\right ) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {\frac {\int \frac {b a^2+\left (3 a^2-4 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}-\frac {2 \left (3 a^2-2 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3481

\(\displaystyle -\frac {\frac {\frac {a \left (3 a^2-4 b^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}-\frac {a^2 \left (3 a^2-5 b^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{b}-\frac {2 \left (3 a^2-2 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {a \left (3 a^2-4 b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {a^2 \left (3 a^2-5 b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}}{b}-\frac {2 \left (3 a^2-2 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {\frac {\frac {2 a \left (3 a^2-4 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}-\frac {a^2 \left (3 a^2-5 b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}}{b}-\frac {2 \left (3 a^2-2 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 b \left (a^2-b^2\right )}-\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}\)

\(\Big \downarrow \) 3284

\(\displaystyle -\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}-\frac {\frac {\frac {2 a \left (3 a^2-4 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}-\frac {2 a^2 \left (3 a^2-5 b^2\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b d (a+b)}}{b}-\frac {2 \left (3 a^2-2 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{2 b \left (a^2-b^2\right )}\)

Input:

Int[Cos[c + d*x]^(5/2)/(a + b*Cos[c + d*x])^2,x]
 

Output:

-1/2*((-2*(3*a^2 - 2*b^2)*EllipticE[(c + d*x)/2, 2])/(b*d) + ((2*a*(3*a^2 
- 4*b^2)*EllipticF[(c + d*x)/2, 2])/(b*d) - (2*a^2*(3*a^2 - 5*b^2)*Ellipti 
cPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b*(a + b)*d))/b)/(b*(a^2 - b^2)) - (a 
^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3271
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*Co 
s[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f* 
(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin 
[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^ 
2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 + c*d*(a^2 
+ b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - 
 d^2) - m*(b*c - a*d)^2 + d*n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x] 
, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - 
b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || 
IntegersQ[2*m, 2*n])
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(814\) vs. \(2(188)=376\).

Time = 18.25 (sec) , antiderivative size = 815, normalized size of antiderivative = 4.41

method result size
default \(\text {Expression too large to display}\) \(815\)

Input:

int(cos(d*x+c)^(5/2)/(a+cos(d*x+c)*b)^2,x,method=_RETURNVERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/b^3/(-2*sin 
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^( 
1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)) 
*a+b*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-12/b^2*a^2/(-2*a*b+2*b^2)*(sin 
(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x 
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/( 
a-b),2^(1/2))-2/b^3*a^3*(-b^2/a/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d 
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-1/2 
/a/(a+b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(- 
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1 
/2*c),2^(1/2))-1/2*b/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2* 
d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2) 
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*b/(a^2-b^2)/a*(sin(1/2*d*x+1/2* 
c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin 
(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^ 
2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+ 
1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(c 
os(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d* 
x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2...
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(5/2)/(a+b*cos(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")
 

Output:

integrate(cos(d*x + c)^(5/2)/(b*cos(d*x + c) + a)^2, x)
 

Giac [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^2,x, algorithm="giac")
 

Output:

integrate(cos(d*x + c)^(5/2)/(b*cos(d*x + c) + a)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{5/2}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int(cos(c + d*x)^(5/2)/(a + b*cos(c + d*x))^2,x)
 

Output:

int(cos(c + d*x)^(5/2)/(a + b*cos(c + d*x))^2, x)
 

Reduce [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^2} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right )^{2} b^{2}+2 \cos \left (d x +c \right ) a b +a^{2}}d x \] Input:

int(cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^2,x)
 

Output:

int((sqrt(cos(c + d*x))*cos(c + d*x)**2)/(cos(c + d*x)**2*b**2 + 2*cos(c + 
 d*x)*a*b + a**2),x)