\(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^3} \, dx\) [601]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 328 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^3} \, dx=-\frac {\left (8 a^4-29 a^2 b^2+15 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{4 a^3 \left (a^2-b^2\right )^2 d}+\frac {b \left (11 a^2-5 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{4 a^2 \left (a^2-b^2\right )^2 d}-\frac {b \left (35 a^4-38 a^2 b^2+15 b^4\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{4 a^3 (a-b)^2 (a+b)^3 d}+\frac {\left (8 a^4-29 a^2 b^2+15 b^4\right ) \sin (c+d x)}{4 a^3 \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)}}+\frac {b^2 \sin (c+d x)}{2 a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}+\frac {b^2 \left (11 a^2-5 b^2\right ) \sin (c+d x)}{4 a^2 \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \] Output:

-1/4*(8*a^4-29*a^2*b^2+15*b^4)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/( 
a^2-b^2)^2/d+1/4*b*(11*a^2-5*b^2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/a 
^2/(a^2-b^2)^2/d-1/4*b*(35*a^4-38*a^2*b^2+15*b^4)*EllipticPi(sin(1/2*d*x+1 
/2*c),2*b/(a+b),2^(1/2))/a^3/(a-b)^2/(a+b)^3/d+1/4*(8*a^4-29*a^2*b^2+15*b^ 
4)*sin(d*x+c)/a^3/(a^2-b^2)^2/d/cos(d*x+c)^(1/2)+1/2*b^2*sin(d*x+c)/a/(a^2 
-b^2)/d/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^2+1/4*b^2*(11*a^2-5*b^2)*sin(d*x 
+c)/a^2/(a^2-b^2)^2/d/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))
 

Mathematica [A] (warning: unable to verify)

Time = 4.20 (sec) , antiderivative size = 334, normalized size of antiderivative = 1.02 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^3} \, dx=\frac {-\frac {\frac {2 \left (56 a^4 b-95 a^2 b^3+45 b^5\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+\frac {8 a \left (2 a^4-10 a^2 b^2+5 b^4\right ) \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )}{b}+\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a b \sqrt {\sin ^2(c+d x)}}}{(a-b)^2 (a+b)^2}+4 \sqrt {\cos (c+d x)} \left (\frac {b^3 \left (-15 a^3+9 a b^2+\left (-13 a^2 b+7 b^3\right ) \cos (c+d x)\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2 (a+b \cos (c+d x))^2}+8 \tan (c+d x)\right )}{16 a^3 d} \] Input:

Integrate[1/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^3),x]
 

Output:

(-(((2*(56*a^4*b - 95*a^2*b^3 + 45*b^5)*EllipticPi[(2*b)/(a + b), (c + d*x 
)/2, 2])/(a + b) + (8*a*(2*a^4 - 10*a^2*b^2 + 5*b^4)*(2*EllipticF[(c + d*x 
)/2, 2] - (2*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)))/b + (2 
*(8*a^4 - 29*a^2*b^2 + 15*b^4)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]] 
], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + 
 b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a 
*b*Sqrt[Sin[c + d*x]^2]))/((a - b)^2*(a + b)^2)) + 4*Sqrt[Cos[c + d*x]]*(( 
b^3*(-15*a^3 + 9*a*b^2 + (-13*a^2*b + 7*b^3)*Cos[c + d*x])*Sin[c + d*x])/( 
(a^2 - b^2)^2*(a + b*Cos[c + d*x])^2) + 8*Tan[c + d*x]))/(16*a^3*d)
 

Rubi [A] (verified)

Time = 2.33 (sec) , antiderivative size = 322, normalized size of antiderivative = 0.98, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.783, Rules used = {3042, 3281, 27, 3042, 3534, 27, 3042, 3534, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^3}dx\)

\(\Big \downarrow \) 3281

\(\displaystyle \frac {\int \frac {4 a^2-4 b \cos (c+d x) a-5 b^2+3 b^2 \cos ^2(c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2}dx}{2 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {4 a^2-4 b \cos (c+d x) a-5 b^2+3 b^2 \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^2}dx}{4 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {4 a^2-4 b \sin \left (c+d x+\frac {\pi }{2}\right ) a-5 b^2+3 b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx}{4 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {\frac {\int \frac {8 a^4-29 b^2 a^2-4 b \left (4 a^2-b^2\right ) \cos (c+d x) a+15 b^4+b^2 \left (11 a^2-5 b^2\right ) \cos ^2(c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}dx}{a \left (a^2-b^2\right )}+\frac {b^2 \left (11 a^2-5 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}}{4 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {8 a^4-29 b^2 a^2-4 b \left (4 a^2-b^2\right ) \cos (c+d x) a+15 b^4+b^2 \left (11 a^2-5 b^2\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}dx}{2 a \left (a^2-b^2\right )}+\frac {b^2 \left (11 a^2-5 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}}{4 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {8 a^4-29 b^2 a^2-4 b \left (4 a^2-b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a+15 b^4+b^2 \left (11 a^2-5 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{2 a \left (a^2-b^2\right )}+\frac {b^2 \left (11 a^2-5 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}}{4 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {\frac {\frac {2 \int -\frac {b \left (8 a^4-29 b^2 a^2+15 b^4\right ) \cos ^2(c+d x)+4 a \left (2 a^4-10 b^2 a^2+5 b^4\right ) \cos (c+d x)+3 b \left (8 a^4-11 b^2 a^2+5 b^4\right )}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}+\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \left (11 a^2-5 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}}{4 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {b \left (8 a^4-29 b^2 a^2+15 b^4\right ) \cos ^2(c+d x)+4 a \left (2 a^4-10 b^2 a^2+5 b^4\right ) \cos (c+d x)+3 b \left (8 a^4-11 b^2 a^2+5 b^4\right )}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \left (11 a^2-5 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}}{4 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {b \left (8 a^4-29 b^2 a^2+15 b^4\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2+4 a \left (2 a^4-10 b^2 a^2+5 b^4\right ) \sin \left (c+d x+\frac {\pi }{2}\right )+3 b \left (8 a^4-11 b^2 a^2+5 b^4\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \left (11 a^2-5 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}}{4 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {\frac {\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\left (8 a^4-29 a^2 b^2+15 b^4\right ) \int \sqrt {\cos (c+d x)}dx-\frac {\int -\frac {3 b^2 \left (8 a^4-11 b^2 a^2+5 b^4\right )-a b^3 \left (11 a^2-5 b^2\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{a}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \left (11 a^2-5 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}}{4 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\left (8 a^4-29 a^2 b^2+15 b^4\right ) \int \sqrt {\cos (c+d x)}dx+\frac {\int \frac {3 b^2 \left (8 a^4-11 b^2 a^2+5 b^4\right )-a b^3 \left (11 a^2-5 b^2\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{a}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \left (11 a^2-5 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}}{4 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\left (8 a^4-29 a^2 b^2+15 b^4\right ) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {\int \frac {3 b^2 \left (8 a^4-11 b^2 a^2+5 b^4\right )-a b^3 \left (11 a^2-5 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}}{a}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \left (11 a^2-5 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}}{4 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {3 b^2 \left (8 a^4-11 b^2 a^2+5 b^4\right )-a b^3 \left (11 a^2-5 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \left (11 a^2-5 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}}{4 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {\frac {\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {b^2 \left (35 a^4-38 a^2 b^2+15 b^4\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx-a b^2 \left (11 a^2-5 b^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}+\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \left (11 a^2-5 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}}{4 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {b^2 \left (35 a^4-38 a^2 b^2+15 b^4\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx-a b^2 \left (11 a^2-5 b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \left (11 a^2-5 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}}{4 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {b^2 \left (35 a^4-38 a^2 b^2+15 b^4\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx-\frac {2 a b^2 \left (11 a^2-5 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}+\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{2 a \left (a^2-b^2\right )}+\frac {b^2 \left (11 a^2-5 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}}{4 a \left (a^2-b^2\right )}+\frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {b^2 \sin (c+d x)}{2 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^2}+\frac {\frac {b^2 \left (11 a^2-5 b^2\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}+\frac {\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {2 \left (8 a^4-29 a^2 b^2+15 b^4\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {\frac {2 b^2 \left (35 a^4-38 a^2 b^2+15 b^4\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{d (a+b)}-\frac {2 a b^2 \left (11 a^2-5 b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}}{a}}{2 a \left (a^2-b^2\right )}}{4 a \left (a^2-b^2\right )}\)

Input:

Int[1/(Cos[c + d*x]^(3/2)*(a + b*Cos[c + d*x])^3),x]
 

Output:

(b^2*Sin[c + d*x])/(2*a*(a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d* 
x])^2) + ((b^2*(11*a^2 - 5*b^2)*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[Cos[c 
+ d*x]]*(a + b*Cos[c + d*x])) + (-(((2*(8*a^4 - 29*a^2*b^2 + 15*b^4)*Ellip 
ticE[(c + d*x)/2, 2])/d + ((-2*a*b^2*(11*a^2 - 5*b^2)*EllipticF[(c + d*x)/ 
2, 2])/d + (2*b^2*(35*a^4 - 38*a^2*b^2 + 15*b^4)*EllipticPi[(2*b)/(a + b), 
 (c + d*x)/2, 2])/((a + b)*d))/b)/a) + (2*(8*a^4 - 29*a^2*b^2 + 15*b^4)*Si 
n[c + d*x])/(a*d*Sqrt[Cos[c + d*x]]))/(2*a*(a^2 - b^2)))/(4*a*(a^2 - b^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3281
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2 
))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n 
 + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n + 3)*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2* 
n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1964\) vs. \(2(315)=630\).

Time = 8.23 (sec) , antiderivative size = 1965, normalized size of antiderivative = 5.99

method result size
default \(\text {Expression too large to display}\) \(1965\)

Input:

int(1/cos(d*x+c)^(3/2)/(a+cos(d*x+c)*b)^3,x,method=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/a^3/sin(1/2* 
d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d 
*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x 
+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/ 
2*c),2^(1/2)))-2*b/a*(-1/2*b^2/a/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2* 
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)^2- 
3/4*b^2*(3*a^2-b^2)/a^2/(a^2-b^2)^2*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*b*cos(1/2*d*x+1/2*c)^2+a-b)-7/8/(a+b) 
/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/ 
(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x 
+1/2*c),2^(1/2))+1/4/(a+b)/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*co 
s(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2) 
^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b+3/8/(a+b)/(a^2-b^2)/a^2*(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d* 
x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2 
))*b^2-9/8*b/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2* 
c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipti 
cF(cos(1/2*d*x+1/2*c),2^(1/2))+3/8*b^3/a^2/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c) 
^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1 
/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9/8*b/(a^2...
 

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^3} \, dx=\text {Timed out} \] Input:

integrate(1/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^3,x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^3} \, dx=\text {Timed out} \] Input:

integrate(1/cos(d*x+c)**(3/2)/(a+b*cos(d*x+c))**3,x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^3} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(1/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^3,x, algorithm="maxima")
 

Output:

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^3} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^3,x, algorithm="giac")
 

Output:

integrate(1/((b*cos(d*x + c) + a)^3*cos(d*x + c)^(3/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^3} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^3} \,d x \] Input:

int(1/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^3),x)
 

Output:

int(1/(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^3), x)
 

Reduce [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^3} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5} b^{3}+3 \cos \left (d x +c \right )^{4} a \,b^{2}+3 \cos \left (d x +c \right )^{3} a^{2} b +\cos \left (d x +c \right )^{2} a^{3}}d x \] Input:

int(1/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^3,x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)**5*b**3 + 3*cos(c + d*x)**4*a*b**2 + 
3*cos(c + d*x)**3*a**2*b + cos(c + d*x)**2*a**3),x)