\(\int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx\) [603]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 438 \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx=-\frac {(a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b d}+\frac {\sqrt {a+b} (a+2 b) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b d}+\frac {\sqrt {a+b} \left (a^2-4 b^2\right ) \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^2 d}+\frac {a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{4 b d \sqrt {\cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d} \] Output:

-1/4*(a-b)*(a+b)^(1/2)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^( 
1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2) 
*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+1/4*(a+b)^(1/2)*(a+2*b)*cot(d*x+c)*Ell 
ipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^ 
(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+1 
/4*(a+b)^(1/2)*(a^2-4*b^2)*cot(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a 
+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c)) 
/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d+1/4*a*(a+b*cos(d*x+c))^ 
(1/2)*sin(d*x+c)/b/d/cos(d*x+c)^(1/2)+1/2*cos(d*x+c)^(1/2)*(a+b*cos(d*x+c) 
)^(1/2)*sin(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 18.53 (sec) , antiderivative size = 1152, normalized size of antiderivative = 2.63 \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx =\text {Too large to display} \] Input:

Integrate[Cos[c + d*x]^(3/2)*Sqrt[a + b*Cos[c + d*x]],x]
 

Output:

(Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(2*d) + ((-12*a 
^2*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x 
]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a 
]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2 
]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c 
 + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - 16*a*b*((Sqrt[((a + b)*Cot[(c + d*x)/ 
2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[ 
((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin 
[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + 
b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x 
]]) - (Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + 
 d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^ 
2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Cs 
c[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqr 
t[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])) + 2*a*((I*Cos[(c + d*x)/2]*Sqrt 
[a + b*Cos[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c + d*x)/2]/Sqrt[Cos[c + d*x 
]]], (-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x 
]]*Sqrt[((a + b*Cos[c + d*x])*Sec[c + d*x])/(a + b)]) + (2*a*((a*Sqrt[((a 
+ b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d 
*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c +...
 

Rubi [A] (verified)

Time = 1.94 (sec) , antiderivative size = 435, normalized size of antiderivative = 0.99, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.560, Rules used = {3042, 3300, 27, 3042, 3540, 25, 3042, 3532, 3042, 3288, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3300

\(\displaystyle \frac {\int \frac {2 \cos (c+d x) b^2+a \cos ^2(c+d x) b+a b}{2 \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{2 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {2 \cos (c+d x) b^2+a \cos ^2(c+d x) b+a b}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {2 \sin \left (c+d x+\frac {\pi }{2}\right ) b^2+a \sin \left (c+d x+\frac {\pi }{2}\right )^2 b+a b}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3540

\(\displaystyle \frac {\frac {\int -\frac {b a^2-2 b^2 \cos (c+d x) a+b \left (a^2-4 b^2\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{2 b}+\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {\int \frac {b a^2-2 b^2 \cos (c+d x) a+b \left (a^2-4 b^2\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {\int \frac {b a^2-2 b^2 \sin \left (c+d x+\frac {\pi }{2}\right ) a+b \left (a^2-4 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3532

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a^2 b-2 a b^2 \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+b \left (a^2-4 b^2\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {b \left (a^2-4 b^2\right ) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\int \frac {a^2 b-2 a b^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3288

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a^2 b-2 a b^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \left (a^2-4 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a^2 b \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-a b (a+2 b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx-\frac {2 \sqrt {a+b} \left (a^2-4 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a^2 b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-a b (a+2 b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \left (a^2-4 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a^2 b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \left (a^2-4 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}-\frac {2 b \sqrt {a+b} (a+2 b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {\frac {a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {-\frac {2 \sqrt {a+b} \left (a^2-4 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}-\frac {2 b \sqrt {a+b} (a+2 b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}+\frac {2 b (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{d}}{2 b}}{4 b}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\)

Input:

Int[Cos[c + d*x]^(3/2)*Sqrt[a + b*Cos[c + d*x]],x]
 

Output:

(Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(2*d) + (-1/2*( 
(2*(a - b)*b*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + 
d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - 
Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d - (2*b*Sqr 
t[a + b]*(a + 2*b)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/ 
(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c 
+ d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d - (2*Sqrt[a + b] 
*(a^2 - 4*b^2)*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c 
+ d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 
- Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d)/b + (a* 
Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]))/(4*b)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3300
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x] 
)^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[1/(d*(m + n))   I 
nt[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a^2*c*d*( 
m + n) + b*d*(b*c*(m - 1) + a*d*n) + (a*d*(2*b*c + a*d)*(m + n) - b*d*(a*c 
- b*d*(m + n - 1)))*Sin[e + f*x] + b*d*(b*c*n + a*d*(2*m + n - 1))*Sin[e + 
f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[0, m, 2] && LtQ[-1, n, 2] && 
NeQ[m + n, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3532
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[C/b^2   Int[Sqrt[a + b*Sin[e + f*x]] 
/Sqrt[c + d*Sin[e + f*x]], x], x] + Simp[1/b^2   Int[(A*b^2 - a^2*C + b*(b* 
B - 2*a*C)*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x 
]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] & 
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3540
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(Sqrt[c + d*Sin[e + f 
*x]]/(d*f*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[1/(2*d)   Int[(1/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]))*Simp[2*a*A*d - C*(b*c - a*d) - 
 2*(a*c*C - d*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d))*Sin[e + 
 f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a 
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [A] (verified)

Time = 7.87 (sec) , antiderivative size = 735, normalized size of antiderivative = 1.68

method result size
default \(\frac {\left (\left (2+2 \cos \left (d x +c \right )^{2}+4 \cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a^{2} \operatorname {EllipticPi}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right )+\left (-8 \cos \left (d x +c \right )^{2}-16 \cos \left (d x +c \right )-8\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, b^{2} \operatorname {EllipticPi}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a^{2} \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a b \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (-2 \cos \left (d x +c \right )^{2}-4 \cos \left (d x +c \right )-2\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a b \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (4 \cos \left (d x +c \right )^{2}+8 \cos \left (d x +c \right )+4\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, b^{2} \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+a^{2} \cos \left (d x +c \right ) \sin \left (d x +c \right )+\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (2+3 \cos \left (d x +c \right )\right ) a b +\sin \left (d x +c \right ) \cos \left (d x +c \right )^{2} \left (2+2 \cos \left (d x +c \right )\right ) b^{2}\right ) \sqrt {a +\cos \left (d x +c \right ) b}}{4 d \sqrt {\cos \left (d x +c \right )}\, \left (b \cos \left (d x +c \right )^{2}+a \cos \left (d x +c \right )+\cos \left (d x +c \right ) b +a \right ) b}\) \(735\)

Input:

int(cos(d*x+c)^(3/2)*(a+cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/4/d*((2+2*cos(d*x+c)^2+4*cos(d*x+c))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*( 
(a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a^2*EllipticPi(cot(d*x+c)-csc 
(d*x+c),-1,(-(a-b)/(a+b))^(1/2))+(-8*cos(d*x+c)^2-16*cos(d*x+c)-8)*(cos(d* 
x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*b 
^2*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))+(-cos(d*x+c)^ 
2-2*cos(d*x+c)-1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos 
(d*x+c)+1)/(a+b))^(1/2)*a^2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b)) 
^(1/2))+(-cos(d*x+c)^2-2*cos(d*x+c)-1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*( 
(a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a*b*EllipticE(cot(d*x+c)-csc( 
d*x+c),(-(a-b)/(a+b))^(1/2))+(-2*cos(d*x+c)^2-4*cos(d*x+c)-2)*(cos(d*x+c)/ 
(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a*b*El 
lipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(4*cos(d*x+c)^2+8*cos( 
d*x+c)+4)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+ 
1)/(a+b))^(1/2)*b^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+ 
a^2*cos(d*x+c)*sin(d*x+c)+sin(d*x+c)*cos(d*x+c)*(2+3*cos(d*x+c))*a*b+sin(d 
*x+c)*cos(d*x+c)^2*(2+2*cos(d*x+c))*b^2)*(a+cos(d*x+c)*b)^(1/2)/cos(d*x+c) 
^(1/2)/(b*cos(d*x+c)^2+a*cos(d*x+c)+cos(d*x+c)*b+a)/b
 

Fricas [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx=\int { \sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

integral(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(3/2), x)
 

Sympy [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx=\int \sqrt {a + b \cos {\left (c + d x \right )}} \cos ^{\frac {3}{2}}{\left (c + d x \right )}\, dx \] Input:

integrate(cos(d*x+c)**(3/2)*(a+b*cos(d*x+c))**(1/2),x)
 

Output:

Integral(sqrt(a + b*cos(c + d*x))*cos(c + d*x)**(3/2), x)
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx=\int { \sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(3/2), x)
 

Giac [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)^(3/2)*(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx=\int {\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {a+b\,\cos \left (c+d\,x\right )} \,d x \] Input:

int(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^(1/2),x)
 

Output:

int(cos(c + d*x)^(3/2)*(a + b*cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)} \, dx=\int \sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \] Input:

int(cos(d*x+c)^(3/2)*(a+b*cos(d*x+c))^(1/2),x)
 

Output:

int(sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x))*cos(c + d*x),x)