\(\int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [608]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 329 \[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 (a-b) \sqrt {a+b} \left (9 a^2-2 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^3 d}-\frac {2 (a-b) \sqrt {a+b} (9 a+2 b) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^2 d}+\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 a d \cos ^{\frac {3}{2}}(c+d x)} \] Output:

2/15*(a-b)*(a+b)^(1/2)*(9*a^2-2*b^2)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c)) 
^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c) 
)/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^3/d-2/15*(a-b)*(a+b)^(1/2) 
*(9*a+2*b)*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x 
+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d 
*x+c))/(a-b))^(1/2)/a^2/d+2/5*(a+b*cos(d*x+c))^(1/2)*sin(d*x+c)/d/cos(d*x+ 
c)^(5/2)+2/15*b*(a+b*cos(d*x+c))^(1/2)*sin(d*x+c)/a/d/cos(d*x+c)^(3/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 13.64 (sec) , antiderivative size = 453, normalized size of antiderivative = 1.38 \[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {8 \cos ^2\left (\frac {1}{2} (c+d x)\right )^{7/2} \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \left (-2 \left (9 a^3+9 a^2 b-2 a b^2-2 b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+2 a \left (9 a^2+7 a b-2 b^2\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )-\left (9 a^2-2 b^2\right ) \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{15 a^2 d \cos ^{\frac {3}{2}}(c+d x) (1+\cos (c+d x))^{3/2} \sqrt {a+b \cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \left (\frac {2 \sec (c+d x) \left (9 a^2 \sin (c+d x)-2 b^2 \sin (c+d x)\right )}{15 a^2}+\frac {2 b \sec (c+d x) \tan (c+d x)}{15 a}+\frac {2}{5} \sec ^2(c+d x) \tan (c+d x)\right )}{d} \] Input:

Integrate[Sqrt[a + b*Cos[c + d*x]]/Cos[c + d*x]^(7/2),x]
 

Output:

(8*(Cos[(c + d*x)/2]^2)^(7/2)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[C 
os[c + d*x]*Sec[(c + d*x)/2]^2]*(-2*(9*a^3 + 9*a^2*b - 2*a*b^2 - 2*b^3)*Sq 
rt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 
+ Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 
2*a*(9*a^2 + 7*a*b - 2*b^2)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a 
+ b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + 
d*x)/2]], (-a + b)/(a + b)] - (9*a^2 - 2*b^2)*Cos[c + d*x]*(a + b*Cos[c + 
d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(15*a^2*d*Cos[c + d*x]^(3/2)*( 
1 + Cos[c + d*x])^(3/2)*Sqrt[a + b*Cos[c + d*x]]) + (Sqrt[Cos[c + d*x]]*Sq 
rt[a + b*Cos[c + d*x]]*((2*Sec[c + d*x]*(9*a^2*Sin[c + d*x] - 2*b^2*Sin[c 
+ d*x]))/(15*a^2) + (2*b*Sec[c + d*x]*Tan[c + d*x])/(15*a) + (2*Sec[c + d* 
x]^2*Tan[c + d*x])/5))/d
 

Rubi [A] (verified)

Time = 1.26 (sec) , antiderivative size = 338, normalized size of antiderivative = 1.03, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {3042, 3275, 27, 3042, 3534, 27, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3275

\(\displaystyle \frac {2}{5} \int \frac {2 b \cos ^2(c+d x)+3 a \cos (c+d x)+b}{2 \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \frac {2 b \cos ^2(c+d x)+3 a \cos (c+d x)+b}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \frac {2 b \sin \left (c+d x+\frac {\pi }{2}\right )^2+3 a \sin \left (c+d x+\frac {\pi }{2}\right )+b}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {1}{5} \left (\frac {2 \int \frac {9 a^2+7 b \cos (c+d x) a-2 b^2}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{3 a}+\frac {2 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \left (\frac {\int \frac {9 a^2+7 b \cos (c+d x) a-2 b^2}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{3 a}+\frac {2 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {\int \frac {9 a^2+7 b \sin \left (c+d x+\frac {\pi }{2}\right ) a-2 b^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a}+\frac {2 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {1}{5} \left (\frac {\left (9 a^2-2 b^2\right ) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-(a-b) (9 a+2 b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{3 a}+\frac {2 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {\left (9 a^2-2 b^2\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) (9 a+2 b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a}+\frac {2 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {1}{5} \left (\frac {\left (9 a^2-2 b^2\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} (9 a+2 b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{3 a}+\frac {2 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {1}{5} \left (\frac {\frac {2 (a-b) \sqrt {a+b} \left (9 a^2-2 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 (a-b) \sqrt {a+b} (9 a+2 b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{3 a}+\frac {2 b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

Input:

Int[Sqrt[a + b*Cos[c + d*x]]/Cos[c + d*x]^(7/2),x]
 

Output:

(2*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (((2* 
(a - b)*Sqrt[a + b]*(9*a^2 - 2*b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + 
 b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sq 
rt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/( 
a^2*d) - (2*(a - b)*Sqrt[a + b]*(9*a + 2*b)*Cot[c + d*x]*EllipticF[ArcSin[ 
Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - 
 b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a 
- b)])/(a*d))/(3*a) + (2*b*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(3*a*d*C 
os[c + d*x]^(3/2)))/5
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3275
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x] 
)^(m + 1)*((c + d*Sin[e + f*x])^n/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m 
 + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^ 
(n - 1)*Simp[a*c*(m + 1) + b*d*n + (a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] 
 - b*d*(m + n + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, 
x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, 
 -1] && LtQ[0, n, 1] && IntegersQ[2*m, 2*n]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(962\) vs. \(2(291)=582\).

Time = 15.02 (sec) , antiderivative size = 963, normalized size of antiderivative = 2.93

method result size
default \(\text {Expression too large to display}\) \(963\)

Input:

int((a+cos(d*x+c)*b)^(1/2)/cos(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-2/15/d*(((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d* 
x+c)+1))^(1/2)*a^3*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*( 
-9*cos(d*x+c)^4-18*cos(d*x+c)^3-9*cos(d*x+c)^2)+((a+cos(d*x+c)*b)/(cos(d*x 
+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*EllipticE(cot( 
d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(-9*cos(d*x+c)^4-18*cos(d*x+c)^3-9 
*cos(d*x+c)^2)+((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/( 
cos(d*x+c)+1))^(1/2)*a*b^2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^ 
(1/2))*(2*cos(d*x+c)^4+4*cos(d*x+c)^3+2*cos(d*x+c)^2)+((a+cos(d*x+c)*b)/(c 
os(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*EllipticE( 
cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(2*cos(d*x+c)^4+4*cos(d*x+c)^3 
+2*cos(d*x+c)^2)+((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c) 
/(cos(d*x+c)+1))^(1/2)*a^3*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^ 
(1/2))*(9*cos(d*x+c)^4+18*cos(d*x+c)^3+9*cos(d*x+c)^2)+((a+cos(d*x+c)*b)/( 
cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*Ellipti 
cF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(7*cos(d*x+c)^4+14*cos(d*x+ 
c)^3+7*cos(d*x+c)^2)+((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d* 
x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/( 
a+b))^(1/2))*(-2*cos(d*x+c)^4-4*cos(d*x+c)^3-2*cos(d*x+c)^2)+(-9*cos(d*x+c 
)^2-3*cos(d*x+c)-3)*sin(d*x+c)*a^3+sin(d*x+c)*cos(d*x+c)*(-9*cos(d*x+c)^2- 
4*cos(d*x+c)-4)*a^2*b+sin(d*x+c)*cos(d*x+c)^2*(1-cos(d*x+c))*b^2*a+2*b^...
 

Fricas [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {\sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(7/2),x, algorithm="fricas")
 

Output:

integral(sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(7/2), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))**(1/2)/cos(d*x+c)**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {\sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(7/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(7/2), x)
 

Giac [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {\sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(7/2),x, algorithm="giac")
 

Output:

integrate(sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(7/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a+b\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^{7/2}} \,d x \] Input:

int((a + b*cos(c + d*x))^(1/2)/cos(c + d*x)^(7/2),x)
 

Output:

int((a + b*cos(c + d*x))^(1/2)/cos(c + d*x)^(7/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x \] Input:

int((a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(7/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/cos(c + d*x)**4,x)