\(\int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx\) [633]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 266 \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx=-\frac {2 \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a \sqrt {a+b} d}+\frac {2 \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a \sqrt {a+b} d}+\frac {2 a \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \] Output:

-2*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2 
),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/( 
a-b))^(1/2)/a/(a+b)^(1/2)/d+2*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/ 
(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b) 
)^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/(a+b)^(1/2)/d+2*a*sin(d*x+c)/(a^2 
-b^2)/d/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2)
 

Mathematica [A] (warning: unable to verify)

Time = 6.22 (sec) , antiderivative size = 196, normalized size of antiderivative = 0.74 \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx=\frac {2 \left ((a+b) \sqrt {1+\cos (c+d x)} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )-(a+b) \sqrt {1+\cos (c+d x)} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+(a-b) \sqrt {\cos (c+d x)} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{\left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}} \] Input:

Integrate[Sqrt[Cos[c + d*x]]/(a + b*Cos[c + d*x])^(3/2),x]
 

Output:

(2*((a + b)*Sqrt[1 + Cos[c + d*x]]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + 
 Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - ( 
a + b)*Sqrt[1 + Cos[c + d*x]]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[ 
c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + (a - b 
)*Sqrt[Cos[c + d*x]]*Tan[(c + d*x)/2]))/((a^2 - b^2)*d*Sqrt[a + b*Cos[c + 
d*x]])
 

Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 290, normalized size of antiderivative = 1.09, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3042, 3273, 3042, 3274, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 3273

\(\displaystyle \frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)}dx}{a^2-b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{a^2-b^2}\)

\(\Big \downarrow \) 3274

\(\displaystyle \frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-(a-b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}\)

Input:

Int[Sqrt[Cos[c + d*x]]/(a + b*Cos[c + d*x])^(3/2),x]
 

Output:

-(((2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + 
 d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - 
 Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) - (2* 
(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]] 
/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c 
 + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d))/(a^2 - b^2 
)) + (2*a*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c 
 + d*x]])
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3273
Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_ 
)])^(3/2), x_Symbol] :> Simp[-2*a*d*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b 
*Sin[e + f*x]]*Sqrt[d*Sin[e + f*x]])), x] - Simp[d^2/(a^2 - b^2)   Int[Sqrt 
[a + b*Sin[e + f*x]]/(d*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, d, e, f 
}, x] && NeQ[a^2 - b^2, 0]
 

rule 3274
Int[Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2), x_Symbol] :> Simp[(c - d)/(a - b)   Int[1/(Sqrt[a + b*Si 
n[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Simp[(b*c - a*d)/(a - b) 
Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]] 
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(489\) vs. \(2(240)=480\).

Time = 8.32 (sec) , antiderivative size = 490, normalized size of antiderivative = 1.84

method result size
default \(\frac {2 \left (\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, b \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, b \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\cos \left (d x +c \right ) \sin \left (d x +c \right ) a -b \cos \left (d x +c \right ) \sin \left (d x +c \right )\right ) \sqrt {a +\cos \left (d x +c \right ) b}}{d \sqrt {\cos \left (d x +c \right )}\, \left (b \cos \left (d x +c \right )^{2}+a \cos \left (d x +c \right )+\cos \left (d x +c \right ) b +a \right ) \left (a -b \right ) \left (a +b \right )}\) \(490\)

Input:

int(cos(d*x+c)^(1/2)/(a+cos(d*x+c)*b)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2/d*((-cos(d*x+c)^2-2*cos(d*x+c)-1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+ 
cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a*EllipticE(cot(d*x+c)-csc(d*x+c 
),(-(a-b)/(a+b))^(1/2))+(-cos(d*x+c)^2-2*cos(d*x+c)-1)*(cos(d*x+c)/(cos(d* 
x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*b*EllipticE(c 
ot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(cos(d*x+c)^2+2*cos(d*x+c)+1)*( 
(a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^( 
1/2)*a*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(cos(d*x+c)^2 
+2*cos(d*x+c)+1)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c) 
/(cos(d*x+c)+1))^(1/2)*b*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1 
/2))+cos(d*x+c)*sin(d*x+c)*a-b*cos(d*x+c)*sin(d*x+c))*(a+cos(d*x+c)*b)^(1/ 
2)/cos(d*x+c)^(1/2)/(b*cos(d*x+c)^2+a*cos(d*x+c)+cos(d*x+c)*b+a)/(a-b)/(a+ 
b)
 

Fricas [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")
 

Output:

integral(sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(b^2*cos(d*x + c)^2 + 
 2*a*b*cos(d*x + c) + a^2), x)
 

Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\cos {\left (c + d x \right )}}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**(3/2),x)
 

Output:

Integral(sqrt(cos(c + d*x))/(a + b*cos(c + d*x))**(3/2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(cos(d*x + c))/(b*cos(d*x + c) + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {\sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

integrate(sqrt(cos(d*x + c))/(b*cos(d*x + c) + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int(cos(c + d*x)^(1/2)/(a + b*cos(c + d*x))^(3/2),x)
 

Output:

int(cos(c + d*x)^(1/2)/(a + b*cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2} b^{2}+2 \cos \left (d x +c \right ) a b +a^{2}}d x \] Input:

int(cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/(cos(c + d*x)**2*b**2 + 
2*cos(c + d*x)*a*b + a**2),x)