\(\int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}} \, dx\) [637]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 433 \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}} \, dx=\frac {2 \left (3 a^4+8 a^2 b^2-16 b^4\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{5 a^5 \sqrt {a+b} d}-\frac {2 (3 a+4 b) \left (a^2+4 b^2\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{5 a^4 \sqrt {a+b} d}+\frac {2 b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (a^2-6 b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 a^2 \left (a^2-b^2\right ) d \cos ^{\frac {5}{2}}(c+d x)}-\frac {2 b \left (3 a^2-8 b^2\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 a^3 \left (a^2-b^2\right ) d \cos ^{\frac {3}{2}}(c+d x)} \] Output:

2/5*(3*a^4+8*a^2*b^2-16*b^4)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/( 
a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b)) 
^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^5/(a+b)^(1/2)/d-2/5*(3*a+4*b)*(a^2 
+4*b^2)*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c) 
^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+ 
c))/(a-b))^(1/2)/a^4/(a+b)^(1/2)/d+2*b^2*sin(d*x+c)/a/(a^2-b^2)/d/cos(d*x+ 
c)^(5/2)/(a+b*cos(d*x+c))^(1/2)+2/5*(a^2-6*b^2)*(a+b*cos(d*x+c))^(1/2)*sin 
(d*x+c)/a^2/(a^2-b^2)/d/cos(d*x+c)^(5/2)-2/5*b*(3*a^2-8*b^2)*(a+b*cos(d*x+ 
c))^(1/2)*sin(d*x+c)/a^3/(a^2-b^2)/d/cos(d*x+c)^(3/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.66 (sec) , antiderivative size = 1314, normalized size of antiderivative = 3.03 \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}} \, dx =\text {Too large to display} \] Input:

Integrate[1/(Cos[c + d*x]^(7/2)*(a + b*Cos[c + d*x])^(3/2)),x]
 

Output:

((a^2 + 4*b^2)*((-4*a*(4*a^2*b - 4*b^3)*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/ 
(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + 
b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[ 
((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Si 
n[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - 
4*a*(3*a^3 - 4*a*b^2)*((Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[- 
(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])* 
Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + 
d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4 
)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (Sqrt[((a + b)*C 
ot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2] 
^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*Ell 
ipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/S 
qrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a 
 + b*Cos[c + d*x]])) + 2*(3*a^2*b - 4*b^3)*((I*Cos[(c + d*x)/2]*Sqrt[a + b 
*Cos[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c + d*x)/2]/Sqrt[Cos[c + d*x]]], ( 
-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqr 
t[((a + b*Cos[c + d*x])*Sec[c + d*x])/(a + b)]) + (2*a*((a*Sqrt[((a + b)*C 
ot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2] 
^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*...
 

Rubi [A] (verified)

Time = 1.95 (sec) , antiderivative size = 445, normalized size of antiderivative = 1.03, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.560, Rules used = {3042, 3281, 27, 3042, 3534, 27, 3042, 3534, 27, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 3281

\(\displaystyle \frac {2 \int \frac {a^2-b \cos (c+d x) a-6 b^2+4 b^2 \cos ^2(c+d x)}{2 \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a^2-b \cos (c+d x) a-6 b^2+4 b^2 \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a^2-b \sin \left (c+d x+\frac {\pi }{2}\right ) a-6 b^2+4 b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {\frac {2 \int -\frac {-2 b \left (a^2-6 b^2\right ) \cos ^2(c+d x)-a \left (3 a^2+2 b^2\right ) \cos (c+d x)+3 b \left (3 a^2-8 b^2\right )}{2 \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{5 a}+\frac {2 \left (a^2-6 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 a d \cos ^{\frac {5}{2}}(c+d x)}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 \left (a^2-6 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {\int \frac {-2 b \left (a^2-6 b^2\right ) \cos ^2(c+d x)-a \left (3 a^2+2 b^2\right ) \cos (c+d x)+3 b \left (3 a^2-8 b^2\right )}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{5 a}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \left (a^2-6 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {\int \frac {-2 b \left (a^2-6 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2-a \left (3 a^2+2 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )+3 b \left (3 a^2-8 b^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{5 a}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {\frac {2 \left (a^2-6 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {\frac {2 \int -\frac {3 \left (3 a^4+8 b^2 a^2-b \left (a^2+4 b^2\right ) \cos (c+d x) a-16 b^4\right )}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{3 a}+\frac {2 b \left (3 a^2-8 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{a d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 \left (a^2-6 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {\frac {2 b \left (3 a^2-8 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {3 a^4+8 b^2 a^2-b \left (a^2+4 b^2\right ) \cos (c+d x) a-16 b^4}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a}}{5 a}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \left (a^2-6 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {\frac {2 b \left (3 a^2-8 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {3 a^4+8 b^2 a^2-b \left (a^2+4 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a-16 b^4}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{5 a}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {\frac {2 \left (a^2-6 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {\frac {2 b \left (3 a^2-8 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\left (3 a^4+8 a^2 b^2-16 b^4\right ) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-(a-b) (3 a+4 b) \left (a^2+4 b^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{a}}{5 a}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \left (a^2-6 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {\frac {2 b \left (3 a^2-8 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\left (3 a^4+8 a^2 b^2-16 b^4\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) (3 a+4 b) \left (a^2+4 b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{5 a}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {\frac {2 \left (a^2-6 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {\frac {2 b \left (3 a^2-8 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\left (3 a^4+8 a^2 b^2-16 b^4\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} (3 a+4 b) \left (a^2+4 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a}}{5 a}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {2 b^2 \sin (c+d x)}{a d \left (a^2-b^2\right ) \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}+\frac {\frac {2 \left (a^2-6 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {\frac {2 b \left (3 a^2-8 b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {2 (a-b) \sqrt {a+b} \left (3 a^4+8 a^2 b^2-16 b^4\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 (a-b) \sqrt {a+b} (3 a+4 b) \left (a^2+4 b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a}}{5 a}}{a \left (a^2-b^2\right )}\)

Input:

Int[1/(Cos[c + d*x]^(7/2)*(a + b*Cos[c + d*x])^(3/2)),x]
 

Output:

(2*b^2*Sin[c + d*x])/(a*(a^2 - b^2)*d*Cos[c + d*x]^(5/2)*Sqrt[a + b*Cos[c 
+ d*x]]) + ((2*(a^2 - 6*b^2)*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(5*a*d 
*Cos[c + d*x]^(5/2)) - (-(((2*(a - b)*Sqrt[a + b]*(3*a^4 + 8*a^2*b^2 - 16* 
b^4)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*S 
qrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + 
b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a^2*d) - (2*(a - b)*Sqrt[a + b] 
*(3*a + 4*b)*(a^2 + 4*b^2)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c 
+ d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 
- Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d))/a) 
+ (2*b*(3*a^2 - 8*b^2)*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(a*d*Cos[c + 
 d*x]^(3/2)))/(5*a))/(a*(a^2 - b^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3281
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2 
))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n 
 + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n + 3)*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2* 
n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1510\) vs. \(2(391)=782\).

Time = 31.17 (sec) , antiderivative size = 1511, normalized size of antiderivative = 3.49

method result size
default \(\text {Expression too large to display}\) \(1511\)

Input:

int(1/cos(d*x+c)^(7/2)/(a+cos(d*x+c)*b)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2/5/d*(((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+ 
c)+1))^(1/2)*a^5*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(3* 
cos(d*x+c)^4+6*cos(d*x+c)^3+3*cos(d*x+c)^2)+((a+cos(d*x+c)*b)/(cos(d*x+c)+ 
1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^4*b*EllipticE(cot(d*x+ 
c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(3*cos(d*x+c)^4+6*cos(d*x+c)^3+3*cos(d 
*x+c)^2)+((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d* 
x+c)+1))^(1/2)*a^3*b^2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2 
))*(8*cos(d*x+c)^4+16*cos(d*x+c)^3+8*cos(d*x+c)^2)+((a+cos(d*x+c)*b)/(cos( 
d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b^3*EllipticE 
(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(8*cos(d*x+c)^4+16*cos(d*x+c) 
^3+8*cos(d*x+c)^2)+((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+ 
c)/(cos(d*x+c)+1))^(1/2)*a*b^4*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+ 
b))^(1/2))*(-16*cos(d*x+c)^4-32*cos(d*x+c)^3-16*cos(d*x+c)^2)+((a+cos(d*x+ 
c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^5*El 
lipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(-16*cos(d*x+c)^4-32*c 
os(d*x+c)^3-16*cos(d*x+c)^2)+((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2) 
*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^5*EllipticF(cot(d*x+c)-csc(d*x+c),(-( 
a-b)/(a+b))^(1/2))*(-3*cos(d*x+c)^4-6*cos(d*x+c)^3-3*cos(d*x+c)^2)+((a+cos 
(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a 
^4*b*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)^...
 

Fricas [F]

\[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")
 

Output:

integral(sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(b^2*cos(d*x + c)^6 + 
 2*a*b*cos(d*x + c)^5 + a^2*cos(d*x + c)^4), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(1/cos(d*x+c)**(7/2)/(a+b*cos(d*x+c))**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

integrate(1/((b*cos(d*x + c) + a)^(3/2)*cos(d*x + c)^(7/2)), x)
 

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate(1/cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

integrate(1/((b*cos(d*x + c) + a)^(3/2)*cos(d*x + c)^(7/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{7/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int(1/(cos(c + d*x)^(7/2)*(a + b*cos(c + d*x))^(3/2)),x)
 

Output:

int(1/(cos(c + d*x)^(7/2)*(a + b*cos(c + d*x))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{6} b^{2}+2 \cos \left (d x +c \right )^{5} a b +\cos \left (d x +c \right )^{4} a^{2}}d x \] Input:

int(1/cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(3/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/(cos(c + d*x)**6*b**2 + 
2*cos(c + d*x)**5*a*b + cos(c + d*x)**4*a**2),x)